
HAL Id: inserm-00090525
https://inserm.hal.science/inserm-00090525

Submitted on 31 Aug 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing expectation values for RNA motifs using
discrete convolutions.

André Lambert, Matthieu Legendre, Jean-Fred Fontaine, Daniel Gautheret

To cite this version:
André Lambert, Matthieu Legendre, Jean-Fred Fontaine, Daniel Gautheret. Computing expecta-
tion values for RNA motifs using discrete convolutions.. BMC Bioinformatics, 2005, 6, pp.118.
�10.1186/1471-2105-6-118�. �inserm-00090525�

https://inserm.hal.science/inserm-00090525
https://hal.archives-ouvertes.fr


BioMed Central

Page 1 of 11

(page number not for citation purposes)

BMC Bioinformatics

Open AccessMethodology article

Computing expectation values for RNA motifs using discrete 
convolutions
André Lambert1, Matthieu Legendre2, Jean-Fred Fontaine2,3 and 
Daniel Gautheret*2

Address: 1CNRS UMR 6207, Université de la Méditerranée, Luminy Case 907, 13288 Marseille cedex 9, France, 2INSERM ERM 206, Université de 
la Méditerranée, Luminy Case 928, 13288 Marseille Cedex 9, France and 3INSERM EMI U 00.18, CHU d'Angers, 49033 Angers, France

Email: André Lambert - lambert@cpt.univ-mrs.fr; Matthieu Legendre - legendre@tagc.univ-mrs.fr; Jean-Fred Fontaine - jean-fred.fontaine@univ-
angers.fr; Daniel Gautheret* - gautheret@esil.univ-mrs.fr

* Corresponding author    

Abstract

Background: Computational biologists use Expectation values (E-values) to estimate the number

of solutions that can be expected by chance during a database scan. Here we focus on computing

Expectation values for RNA motifs defined by single-strand and helix lod-score profiles with

variable helix spans. Such E-values cannot be computed assuming a normal score distribution and

their estimation previously required lengthy simulations.

Results: We introduce discrete convolutions as an accurate and fast mean to estimate score

distributions of lod-score profiles. This method provides excellent score estimations for all single-

strand or helical elements tested and also applies to the combination of elements into larger,

complex, motifs. Further, the estimated distributions remain accurate even when pseudocounts are

introduced into the lod-score profiles. Estimated score distributions are then easily converted into

E-values.

Conclusion: A good agreement was observed between computed E-values and simulations for a

number of complete RNA motifs. This method is now implemented into the ERPIN software, but

it can be applied as well to any search procedure based on ungapped profiles with statistically

independent columns.

Background
The introduction of the Expectation value (E-value) in the
Blast program in 1990 [1] was a major milestone in the
development of sequence search algorithms. For any
sequence match with a score S obtained in a given data-
base, the E-value is the number of hits of same or higher
score that can be expected by chance. E-values tell biolo-
gists how likely they are to encounter a specific sequence
match in a database search, which is a more useful view of

biological significance than a mere similarity score. Except
in some special cases, low E-values are commonly
accepted as an evidence of sequence homology.

The recent years have seen a growing interest for RNA
motif searches, driven by the discovery of important new
classes of regulatory RNA genes and motifs in all organ-
isms. Non-coding RNAs are characterized in a large part
by long range base pair interactions, whereas linear
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sequence constraints are not as important as in protein
coding genes. As a result, standard sequence alignment
programs such as Blast are not suited to RNA motif search.
Computational biologists have addressed this problem in
several ways, notably through descriptor-based systems in
which the topology of base paired regions is user-specified
[3,5,4], Stochastic Context Free Grammars (SCFG) which
use a complete statistical model of RNA elements [6], and
Secondary Structure Profiles, which use position weight
matrices describing stems and single strands in the RNA
motif, as found in the ERPIN program [8]. Although the
last two methods compute alignment scores, the complex-
ity of the underlying models and search algorithms has
hampered the estimation of an E-value to date.

When the behavior of the score distribution is known,
such as in sequence alignment scores, E-values can be
computed either directly, or by empirically fitting a histo-
gram of scores from a sample of random sequences to the
assumed distribution function [1,2]. Unfortunately, we
will show here that a search algorithm such as the one
used in ERPIN does not produce predictable score distri-
butions. A possible workaround for this practical limita-
tion is to run simulations on randomized sequences and
use the observed hit count at score S as the E-value for this
score. However, since interesting high scoring solutions
can be extremely rare (commonly less than one random
occurrence per genome) simulations often require days of
calculations. Can we then estimate score distributions
without having to run such lengthy simulations?

In this article, we show that ERPIN score distributions can
be estimated a priori through a discrete convolution anal-
ysis of score profiles, based on a random model of nucle-
otide frequencies. This led us to develop a computational
procedure that estimates the score distribution of ERPIN
profiles in a very short time, before the actual search
begins, so that each solution can be automatically
assigned an E-value.

ERPIN profiles
ERPIN is an RNA motif search software using as input a
training set of aligned RNA sequences, and a target data-
base in which the motif is to be identified. The training set
contains both RNA sequence and their common second-
ary structure, specified as shown in Figure 1 in the form of
single strands and helices. Importantly, gap characters
(insertions or deletions) are allowed in single strands but
not in helices. Helices are composed of two distinct
strands of equal length. A region is defined as a continu-
ous stretch of complete single strands or helical elements.
When only one strand of a helix is included in a region,
this strand is considered as a single strand. A mask is a
subset of a region constituted of single strands and/or
complete helices.

ERPIN converts each helix and single strand in the align-
ment into a lod-score profile. This involves two steps.
First, columns in the alignment are converted into fre-
quency profiles, recording the frequencies of bases or
base-pairs in column c as:

Here nic is the number of bases or base-pairs of type i in
column c, and N is the total base or base-pair count in a
column. There is one frequency profile for each single
strand or helix in the alignment. In the case of a single
strand, i ∈  {A, T, G, C}, whereas for a helix, i ∈  {AA, AT,
AG, AC, ..., CC} and each column in a helical profile actu-
ally refers to two positions in the initial alignment. Single
strand profiles thus have 4 rows while helix profiles have
16 rows. The special case of gap-containing single strands,
where a fifth character is added to the profile is discussed
later on.

An example of ERPIN training set containing two double hel-ices (noted 2 and 4), and three single strands (noted 3, 5 and 7)Figure 1
An example of ERPIN training set containing two double hel-
ices (noted 2 and 4), and three single strands (noted 3, 5 and 
7). Due to gaps in the alignment, helix 2 spans 9 to 11 nt, and 
helix 4 spans 6 to 7 nt. Combinations of these allowed ranges 
give 6 possible configurations for the whole RNA motif.
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Frequency profiles are then converted into lod-score pro-
files, where values for column c are defined as:

where bi is the background frequency of base or base-pair
i in the target database. Base-pair frequencies are consid-
ered as the product of individual base frequencies. The
score of a helix or single-strand element is obtained by
presenting a target sequence to this element's profile and
summing the scores obtained for every profile column.
For ungapped elements, the calculation is straightforward.
For gap-containing single strands, a dynamic program-
ming matrix of the profile and target sequence is con-
structed, which provides the best possible alignment score
[8]. In a first stage, let us ignore this alignment procedure
and focus on ungapped elements.

Exclusions and pseudocounts

We define as an exclusion a profile element for which no
base or base pair is observed in the training set, and thus
Pic = 0. Exclusions may be due either to an unsufficient size
of the training set, or to a true avoidance of this particular
base or base-pair at this position in the RNA molecule. In
any case, the log-odd ratio formula would produce a value
of -∞ for such cases, thus requiring a special treatment.
Exclusions are dealt with either by using arbitrary low val-
ues (e.g. -30) or by introducing pseudocounts in the fre-
quency matrix that simulate what could have been
observed in a larger training set.

Pseudocounts are based on some prior knowledge of "typ-
ical" substitution frequencies in RNA molecules, as
observed in a model RNA sequence alignment. The pseu-
docount calculation procedure used in ERPIN is the same
spirit as that of Henikoff and Henikoff [9], but we use a
different definition of pseudocounts, as explained below.
Let us first reformulate the values in any column c of a fre-
quency profile:

Where nij is the number of {i, j} couples in column c, P(i,

j) is the joint probability of finding i and j in this column,

and . This develops into:

Where P(i|j) is the conditional probability of observing i,
knowing that j is observed in the column. This condi-
tional probability amounts to the observed frequency of i

→ j substitutions. To introduce pseudocounts in ERPIN
frequency profiles, P(i|j) is replaced with the average sub-
stitution frequencies observed in a model RNA sequence
alignment, expressed in the form of a substitution matrix
M. Pseudocount-based frequencies can be expressed as:

where M is a square matrix whose columns j are normal-

ized, ∑i Mij = 1, so that . See Methods section for

construction of M. The relative ratio of pseudocounts to
true counts in the final frequency matrix is then controlled
by a user-defined weight parameter α ∈  [0, 1], such that:

Since Mij are generally ≠ 0 in the substitution matrices
(either for single strand or helices), most exclusions in the
frequency profile are replaced by nonzero values as soon
as α ≠ 0. Not only the resulting lod-score profiles are basi-
cally devoid of arbitrary low values, but they better reflect
"natural" base and base-pair substitution frequencies
observed in real RNA alignments. This is especially inter-
esting in helical regions, since the substitution matrix for
helices represent natural exchanges between frequent
base-pairs such as Watson-Crick, G:U or even G:A, while
incurring strong penalties for exchanges involving rare
base pairs. This maintains a large fraction of strongly neg-
ative values in helix profiles, which is desirable for the
sake of search specificity.

Shapes of score distributions: finite and non-
finite scores
We define as a "finite" score the score obtained for a
sequence that does not contain any match to a profile
exclusion. When pseudocounts are used, almost all scores
are finite, but when pseudocounts are not in use (α = 0),
many scores, especially in helix profiles, are "non-finite",
although in practice they are replaced by arbitrary low
values.

Let S denote a finite score obtained at a given site in a ran-
dom sequence. For any x > -∞, the conditional probability
formula reads:

P(S > x) = P(S > -∞).P(S > x|S > -∞)  (7)

In this decomposition, it is noteworthy that:

• The first factor is independent of x as soon as x is finite,

• The second factor can be computed based on profile ele-
ments that contain no exclusion.
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Let Sc (c = 1, 2, .., w) denote a score for column c of a pro-
file, and S = S1 + S2 + ... + Sw the score obtained by present-
ing a given sequence to this profile. If w is large enough (w
t 10) and the distributions of random variables Sc are (i)
independent and (ii) identically distributed, the sum S
follows a normal distribution (central limit theorem
[11]).

Due to exclusions arising with different frequencies in dif-
ferent columns, condition (ii) is generally not fulfilled,
but, using the decomposition given by formula (7) rewrit-
ten for column c, we can write:

P(Sc > x) = Pfs,c.Pf,c(x)  (8)

where Pfs is the probability that a score is finite, and Pf(x)
is the probability that a finite score is higher than x. This
gives, for a complete profile:

In many cases, the probability distributions of finite
scores Pf,c are similar enough so that their sum S is nor-
mally distributed. If this behavior was always observed,
the score distribution could be fully determined by com-
puting the mean value µ and the standard deviation σ that
characterize the normal law, which would enable a direct
calculation of the E-value [2]:

Figure 2 shows the score distributions obtained using the
tRNA region spanning the anticodon and TΨC loop (two
helices + three single-strands) at each position of a 100
Mb random sequence database, with pseudocounts
switched off (α = 0). As expected, finite scores (Fig 2a) fol-
low a normal distribution, while total scores (Fig 2b) are
unevenly distributed.

So called "non-finite" scores may be biologically relevant,
since many valid substitutions are potentially absent from
the training set. However, non-finite scores are detected
only when high enough to fall into the extreme end of the
distribution. This part of the distribution is composed
mainly of finite scores and should thus behave like that of
finite scores. Unfortunately finite scores may also deviate
from a Gaussian distribution, for instance when score dis-
tributions in successive columns are too different from
each other.

Pseudocounts are used to inject missing substitutions into
frequency profiles, resulting in most "non-finite" scores
becoming "finite". But what is the behavior of finite scores
when pseudocounts are in use? Fig 3a–d and 4a–b show
finite score distributions for a variety of ungapped RNA
motifs (shaded bars), obtained using a typical level of
pseudocounts (α = 2.10-4) in frequency profiles. Although
some training sets (tRNA, SECIS) have nearly gaussian
distributions, others (let-7 miRNA, snoRNA, polyA sites)
are more erratic. This is due to the larger number of exclu-
sions in the later sets – only partially compensated for by
pseudocounts – and/or their non-uniform distribution
over profile columns. If we aim to address true biological
problems with such imperfect or sparse training sets, we
necessarily have to deal with this type of score distribution
that cannot be approached with classical methods. None-
theless, we will still be using the decomposition formula
(7), as it provides an important reduction of the range of
values of the random variables involved.

Score distributions of helices and single-strands
Ungapped helices and single strands

How can we estimate score distributions such as those in
Fig 3, 4 ? Let us admit that profile columns are independ-
ent. After matching the profile to a purely random
sequence, the resulting scores for each column would thus
behave as independent random variables, say X1 and X2

for columns 1 and 2. Therefore, the final score for two col-
umns would be:

S = X1 + X2

Then, the probability of obtaining a score S = x is:

The last formula defines the discrete convolution product
[11] of two distributions. The overall score distribution
can be obtained by doing the calculation for every possi-
ble values of u and v.

Using the separation formula (7) between "exclusions"
and "finite scores", equation (10) can be written:

These operations can easily be extended to N columns by
iterating the products on successive columns in the same
single-strand or helix profile. At each successive iteration,
scores are discretized on a predefined grid so that the

P S x P P S x where P Pfs f fs fs c
c

w

( ) . ( ) : ,> = > = ( )
=

∏
1

9

µ µ µ

σ σ

=

=

=

=

∑

∑

c
c

w

c

c
c

w

refers to column c

independence of colum

1

2

1

( )

( nns) P S x P X u X v

P S x P X u P X v

u v u v x

u v u v

( ) ( , )

( ) ( ). ( )

, :

, :

= = = =

= = = =
+ =

+

∑ 1 2

1 2
==

∑ ( )
x

10

P S x P P X u P P X v

P

fs f
u v u v x

fs f

fs

( ) { . ( )}.{ . ( )}

( .

,
, :

,

,

= = = =

=
+ =

∑ 1 1 2 2

1 PP P X u P X vfs f f
u v u v x

,
, :

) ( ). ( )2 1 2 11= = ( )
+ =

∑



BMC Bioinformatics 2005, 6:118 http://www.biomedcentral.com/1471-2105/6/118

Page 5 of 11

(page number not for citation purposes)

number of possible scores increases linearly with the
number of columns (see Methods section for algorithm).

We performed such an analysis on a variety of helix and
single strand profiles, with grid intervals set at ∆x = .05. In
Figures 3 and 4, score distributions estimated from dis-
crete convolution (solid lines) are compared to scores
obtained through simulation on a random database of
variable size (shaded bars). There is a very good agree-
ment between the discrete convolution and simulation.

Gap-containing single strands

The score of a gap-containing single strand in the ERPIN
program is computed from the dynamic programming
alignment matrix. Therefore, it is the maximum of several
values, and could be expected to comply with an extreme
value distribution. However, gapped single strands in
ERPIN are very diverse entities that may include oddities
such as single-nucleotide strands, or strands mostly filled
with gaps. This results in very uneven distributions that we
were not able to model satisfyingly. Therefore, the score

Distributions of finite and total scores obtained from the motif encompassing the anticodon and TΨC loop of tRNA, at each position of a 100 Mb random sequence databaseFigure 2
Distributions of finite and total scores obtained from the motif encompassing the anticodon and TΨC loop of tRNA, at each 
position of a 100 Mb random sequence database. This region covers three single strand profiles and two helix profiles and 
spans a gap-containing single- strand profile that is not included in score calculation. ERPIN results were processed by the epn-
stat utility program. A: finite scores. B: total scores (both finite and non-finite).

a

b
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distribution of a gapped single strand in ERPIN is
currently estimated based on a short simulation per-
formed on a random sequence (see Methods section for
details).

Score distributions of complete regions with 
gaps
Score of a configuration

When presenting a sequence to a whole region, the pres-
ence of gaps in single-strands results in multiple allowed

positions for flanking helical elements. A configuration is
a specific arrangement of helix elements determined by
the number of intervening gaps (Fig 1). There is one score
for each allowed configuration, which is the sum of scores
for all helices and single strands in this configuration. We
therefore need to compose the different score distribu-
tions to obtain the distribution of the total score for one
configuration. This is again done using a discrete convolu-
tion of these distributions, with the same procedure and
grid parameter as above. This provides the score

Comparision of finite score distributions obtained from discrete convolution of helix profiles (solid lines) and simulation (shaded bars)Figure 3
Comparision of finite score distributions obtained from discrete convolution of helix profiles (solid lines) and simulation 
(shaded bars). The various helices in the region under study were combined into a larger 16 × W profile, where W is the total 
number of base-pairs in the region. Lod-scores were computed based on a uniform nucleotide composition, by the convhstat 
utility program.
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distribution of a single configuration. Note that, although
a configuration may contain gapped single strands of
which score distribution was not produced by a discrete
convolution, such distributions can now be treated by this
second convolution round applied to whole profiles.

Score of a complete region

The number of gaps in a single strand is bounded by the
maximum number of gaps observed for this strand in the
training set: mxgaps. For a simple hairpin-loop motif with

mxgaps possible gaps in the loop, there are (mxgaps + 1)
possible configurations. For a whole region containing N
strands with gaps (i = 1, 2, ..., N), the number of configu-
rations is:

Erpin evaluates all possible configurations without any
construction rule or strategy. A combinatorial explosion is

Comparision of finite score distributions obtained from discrete convolution of single-strand profiles (curve) and simulation (shaded bars)Figure 4
Comparision of finite score distributions obtained from discrete convolution of single-strand profiles (curve) and simulation 
(shaded bars). The various strands in the region under study were combined into a larger 4 × W profile, where W is the total 
number of nucleotides in the region. Lod-scores were computed based on a uniform nucleotide composition, by the convsstat 
utility program.
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avoided by implementing multi-stage searches, where
search at each stage is limited to a defined mask, or subset
of the region under study. The score of a region or mask at
in given site is the maximum score obtained for all possi-
ble configurations.

Since a motif is identified only after all possible configu-
rations are evaluated at a given site, our estimation of
motif scores requires taking into account this additional
complexity. Let K denote the number of configurations for
a given motif, and Si, the score obtained for the ith config-
uration. As the ERPIN program does not permit the of
addition gaps relative to those present in the training set,
K is necessarily bounded but its value can be relatively
large. We are now interested in the maximal score
obtained for all configurations at each site. This is the
extreme value distribution, or the distribution of a ran-
dom variable M defined as:

If Pfs = P(Si > -∞) and pi(x) = P(Si > x|Si > -∞), and the ran-
dom variables Si are statistically independent (s.i) and
identically distributed (i.d), then:

The most "interesting" scores are expected to be of the
same order of magnitude as those obtained by training set
sequences. For any realistic training set, these scores
should be very high compared to scores obtained on ran-
dom sequences and, therefore, their probability should be
very low. In this case P(M > x), given by formula (17),
behaves at the first order approximation as K.Pfs.p(x).

For a database of size Ω, considering that individual
sequences in the database are large enough compared to
the search motif so that border effects can be ignored, the
final E-value, is :

E(x) = P(M > x).Ω  (18)

Figure 5 compares these computed E-values (solid lines)
to simulations performed on a random database (circles),
for complex RNA regions encompassing multiple helices
and singles strands (gapped or ungapped). Overall there is
a very good agreement between E-value and simulation,
consistent with our hypothesis that configuration scores

are independent and equally distributed. Importantly, E-
values remain accurate for RNA regions containing large
gapped single strands, such as snoRNA (Fig 5b), Let-7
miRNA (Fig 5c) and SECIS (Fig 5d), and over a wide range
of scores. This last point is also important, since "border-
line" solutions with an E-value around 0.1 or 1 are poten-
tially more interesting biologically as low E-value
solutions. Moreover, computing times for overall E-value
calculations in all our tests motifs remained insignificant
relative to database scan times.

In the case where pseudo-counts are switched-off, profiles
contain multiple "non-finite scores" which are excluded
from the convolution process. This may imply a lack of
accuracy in the left-hand side of the estimated score distri-
bution, where scores have low values, but should have lit-
tle effect in the region of biologically interesting scores.
Therefore we do not expect E-values to deteriorate signifi-
cantly in practise when pseudocounts are switched off.

Conclusion
We have presented a method to estimate the score distri-
butions of RNA helices or single strand profiles and of
their combinations into larger motifs. This method is
based on discrete convolutions. The computing time of
the discrete convolution algorithm increases quadratically
with profile size and remains in any case negligible rela-
tive to database scan durations. This procedure is imple-
mented in the last release of the ERPIN software (V. 4.2)
and provides accurate estimates of E-values for practical
applications. Interestingly, the discrete convolution
approach can be applied as well to others sequence scor-
ing models -nucleic acids or proteins – based on
ungapped profiles with independent columns.

Methods
ERPIN program and utilities

The ERPIN program (sources and executables) is available
at http://tagc.univ-mrs.fr/erpin/. Simulated score distribu-
tions of independent helix and single-strand profiles (Fig
2, 3, 4) were obtained using the -hist (histogram) option
of ERPIN and utility programs epnstat, convhstat, convsstat
and mstat provided in the distribution. For Fig 5, full motif
searches were performed using ERPIN Version 4.2.5 with
pseudocount weight α = 2.10-4. Graphical outputs for fig-
ures 2, 3, 4, 5 were produced using the Matlab [13]
package.

Training sets

Training sets for profile statistics and ERPIN runs in Fig 2,
3, 4, 5 are available on the ERPIN web site and were
obtained as follows:

• tRNA: 903 type I tRNA sequences (all species) from the
1997 version of M. Sprinzl's nuclear tRNA alignment [17].
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• SECIS (Selenocystein Insertion Sequence): 117 meta-
zoan SECIS sequences, from our own compilation [7].

• snoRNA (Small nucleolar RNA): 217 archaean C/D box
snoRNA sequences, compiled and aligned by Fabrice
Leclerc at CNRS Nancy (Personal communication).

• Let-7 miRNA: 27 animal miRNA precursor sequences
from our previous compilation [15].

• PolyA sites: 2327 human polyadenylation sequences
from our previous compilation [16].

RNA substitution matrices for pseudocounts

Pseudocount calculation requires substitution matrices
obtained from a model RNA sequence alignment or
"training set", annoted with secondary structure informa-
tion (helix or single strand). Klein and Eddy have devel-
oped RNA substitution matrices previously [18], but we

Comparision of computed E-values (solid lines) and number of solutions obtained from simulation on a random database of uniform nucleotide composition (circles), for different RNA motifsFigure 5
Comparision of computed E-values (solid lines) and number of solutions obtained from simulation on a random database of 
uniform nucleotide composition (circles), for different RNA motifs. Numbers following "region" refer to secondary structure 
elements in the corresponding training set available from http://tagc.univ-mrs.fr/erpin/. E-values were computed using the mstat 
utility program. (a) tRNA region covering the anticodon and TΨC stem-loops; (b) C/D box snoRNA region covering the major 
stem and C+D boxes; (c) Let-7 miRNA region covering the complete precursor hairpin; (d) SECIS element covering the large 
14 bp stem and apical stem+loops.

a

c

b

d

http://tagc.univ-mrs.fr/erpin/
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use a different type here. Training set columns are con-
verted into profiles containing raw nucleotide or base-pair
counts. Let Q denote a nucleotide or base-pair count pro-
file of width w, produced by a concatenation of all single
strand or helix profiles from the pseudo-count training
set. Q is either a 4-line matrix for single strands (h = 4) or
a 16-line matrix for helices (h = 16). The substitution
matrix M introduced in Section "Exclusions and Pseudo-
counts" is then a square matrix of size h × h defined as:

The square matrix N is actually a "correlation matrix" of
the profile lines since element Nij is the scalar product cor-
relation of lines i and j. Coefficients λj make this matrix
normalized, so that:

Probability conservation is verified for P and therefore it
is also verified for P':

Finally, it is obvious from formula (6) that P" also verifies
verifies probability conservation, hence:

Substitution matrices can be generated from any RNA
sequence alignment using the utility program mksum of
the ERPIN distribution. Default matrices provided with
distribution (SUM.dat file) were obtained using a 16S/18S
rRNA training set from R.Gutell ([10]) containing 6310
sequences from all three phylogenetic domains. We used
the secondary structure of E-coli 16S rRNA as the consen-
sus structure, resulting in 481 columns of helix profile and
7512 columns of single strand profile.

Option -pcw is used to set pseudo-count weight α in the
ERPIN program. Default internal value is 2.10-4, but this
has been rescaled for users by a factor of 2.10-3 giving a
default user value of 0.1 and a practical maximal value
that should not exceed 1. Effects of pseudocounts and of

the α parameter on profiles can be visualized using the
utility program pview.

Score distribution of gap-containing single-strands

The score distribution of gap-containing single strands is
evaluated by repeatedly computing profile scores with a
random sequence of same length L as the profile and same
composition as the target sequence database. The calcula-
tion is repeated C.L2 times, with C a constant, and L <Lmax

in order to limit CPU time for unusually large strands.
Default values are C = 300 and Lmax = 12.

Histograms and discrete convolution product

Although discrete convolutions can be computed using
iterated Fast Fourier Transforms, this approach is subject
to numerical approximations in practice. A direct calcula-
tion is more accurate and proved fast enough in all cases
tested. Time complexity of the discrete convolution algo-
rithm is O(N2) where N is the total number of profile col-
umns. This value remains tractable even for the largest
RNA motifs. The convolution algorithm was adapted
from those found in the Octave [12] and Matlab [13]
packages. The linear sampling interval was set at ∆x = .05.
CPU time for the complete E-value calculation (including
profile construction, convolution of independent profiles
and convolution of configurations) for motifs in Fig 5
ranged from 10-4s to 0.8s on a 2.6 GHz Intel Pentium
workstation with 1 Gb of RAM.

Extreme value distribution

Formula (17) used for calculating the extreme value distri-

bution is of the type (1 - (1 - x)N). If x.N > 1 the result is

obtained with the C library function x xy which lacks
precision when x <<> 1. Otherwise we compute (17) using

the binomial formula for (1 - x)N.
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