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Abstract

Background: The cladistic approach proposed by Templeton has been presented as promising for

the study of the genetic factors involved in common diseases. This approach allows the joint study

of multiple markers within a gene by considering haplotypes and grouping them in nested clades.

The idea is to search for clades with an excess of cases as compared to the whole sample and to

identify the mutations defining these clades as potential candidate disease susceptibility sites.

However, the performance of this approach for the study of the genetic factors involved in complex

diseases has never been studied.

Results: In this paper, we propose a new method to perform such a cladistic analysis and we

estimate its power through simulations. We show that under models where the susceptibility to

the disease is caused by a single genetic variant, the cladistic test is neither really more powerful to

detect an association nor really more efficient to localize the susceptibility site than an individual

SNP testing. However, when two interacting sites are responsible for the disease, the cladistic

analysis greatly improves the probability to find the two susceptibility sites. The impact of the

linkage disequilibrium and of the tree characteristics on the efficiency of the cladistic analysis are

also discussed. An application on a real data set concerning the CARD15 gene and Crohn disease

shows that the method can successfully identify the three variant sites that are involved in the

disease susceptibility.

Conclusion: The use of phylogenies to group haplotypes is especially interesting to pinpoint the

sites that are likely to be involved in disease susceptibility among the different markers identified

within a gene.

Background
With the development of molecular techniques to identify
genetic polymorphisms, numerous markers and in partic-
ular Single Nucleotide Polymorphisms (SNPs) [1,2] are

now available within and between genes for establishing
their possible role in disease susceptibility. One recurrent
question in the literature is the way these markers could
be used to test for association with complex diseases [3,4].
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Should one focus on one marker at a time and simply
compare allele or genotype distributions for the studied
markers in cases and controls or should one consider hap-
lotypes formed by several linked markers? Haplotypic
methods have been suggested to be more powerful at
detecting the role of a given genomic region in disease sus-
ceptibility [4-7]. Indeed, disease susceptibility may be due
to the combined effects of variants at different markers.
Different methods have been proposed to test for associa-
tion between markers located on the same reconstructed
haplotypes and disease susceptibility [4,7-10]. In these
tests, the number of haplotypes being large, the degrees of
freedom to compare cases and controls are also large,
decreasing the power to detect the association. Moreover,
as some haplotypes would only be carried by one or two
individuals, there could be statistical problems owing to
small sample sizes making difficult the evaluation of their
possible effect on the susceptibility to the disease.

A solution to reduce these problems is to group haplo-
types in order to decrease the degrees of freedom and to
increase the number of individuals in the different haplo-
type groups. The cladistic method as described by Temple-
ton et al. [11] is a method to carry out such groupings of
haplotypes and to determine which haplotype or group of
haplotypes is likely to be responsible for the phenotypic
variation observed among the population. It consists in
using parsimony methods to build a phylogeny of the
haplotypes, and to group haplotypes according to the
clades defined by the phylogenetic tree. When applied to
a case/control data set, the proportions of cases and con-
trols in different clades are compared. If a clade shows a
significantly larger number of cases than the others, one
will conclude, first, that there is an association between
the disease and one haplotype or a group of haplotypes
belonging to the clade, and, second, that the mutations
defining the clade containing an excess of cases are good
candidates to be functional gene polymorphisms
involved in the disease susceptibility.

The cladistic analysis relies for a large part on the recon-
struction of an accurate phylogenetic tree, but recombina-
tion is known to bias phylogenetic reconstruction
processes [12]. The recent discovery of the haplotype
block structure of the human genome [13] now provides
an interesting framework for cladistic methods. Indeed,
haplotype blocks define regions in which the recombina-
tion rate is quite low. Moreover, once a block is found to
be associated with a disease, it will not be suitable to use
classical methods based on recombination to fine map
susceptibility loci. Haplotype phylogenies being based on
the history of mutations may then help to identify disease
susceptibility loci.

The cladistic method was first described in a series of five
articles [11,14-17] and applied in different case-control
studies focusing either on quantitative or qualitative data.
For example, Haviland et al. used a cladistic analysis to
study the association between the apolipoprotein AI-CIII-
AIV and plasma lipid, lipoprotein and apolipoprotein lev-
els [18]. Keavney et al. [19] used cladograms to localize
the sites that significantly influence Angiotensin-I Con-
verting Enzyme (ACE). Zhu et al. [20] worked on quanti-
tative data simulated for the twelfth Genetic Analysis
Workshop (GAW). Using regression analysis and analysis
of variance (ANOVA), they were able to find a short
region containing the simulated mutation. Wang et al.
[21] used a nested linear model to analyze the association
between ApoA4 haplotypes and plasma lipid level in the
cladistic framework. Among the studies that consider dis-
crete data is the one by Kittles et al. [22] who tested the
association between haplotype variations on the Y chro-
mosome and alcohol dependence and related personality
traits. Lobos and Todd applied the same cladistic method
to four RFLPs in the tyroxine hydroxylase gene [23], and
to five SNPs in the dopamine receptor D2 gene [24]. Darlu
and Génin [25] applied the method to the GAW 12 simu-
lated data and were able to identify some of the disease
susceptibility sites. For a more detailed review on the sub-
ject, see [26].

More recently Seltman et al. [27] developed a method that
can be applied on family-based data. They proposed a test,
the ET-TDT, that combines the transmission disequilib-
rium test (TDT) and the use of unrooted phylogenetic
trees to group haplotypes. They further extended their
method to the analysis of qualitative and quantitative
data from case-parent trios or population-based studies
[28]. Finally, an alternative method where phylogenetic
trees are reconstructed by a distance method was pro-
posed by Durrant et al. [29] and implemented in the soft-
ware CLADHC.

From these different examples, cladistic methods appear
to be innovative methods to detect an association
between a candidate gene and a disease and to localize
disease susceptibility sites. However, the validity and the
power of these methods to detect association have only
been tested in a very limited number of situations (fixed
pattern of linkage disequilibrium, fixed phylogenetic tree)
[27,29]. In this paper, we develop a new cladistic test
(CT), based on the analysis of a rooted tree, which allows
to make hypotheses about functional polymorphisms
that are involved in the susceptibility to the disease.
Through simulations on ten different tree topologies, we
evaluate the conditions in which this cladistic method is
efficient and compare it to other methods. Finally, we
apply this method to a real data set concerning Crohn dis-
ease and the CARD15 gene [30].
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Results
Association test

As detailed in the method section, four different tests are
performed: a single locus allele-based test referred to as
SbST (Site by Site Test), an haplotype-based test referred
to as HT (Haplotypic Test), a test based on haplotype phy-
logenies referred to as CT (Cladistic Test) and a test based
on the clustering of haplotypes described by Durrant et al.
[29] and referred to as CLADHC. To compare their respec-
tive power to detect an association, simulations were per-
formed under three disease models involving one (model

1) or two (model 2 and model 3) susceptibility sites for
ten different tree topologies.

Results for model 1 are presented in Table 1 and 2. When
the susceptibility site is included in the studied SNPs
(Table 1), SbST is the most powerful test for all trees but
one (tree 8) (between 99.1% and 99.5% depending on
the tree, 99.35% on average), while the other tests have a
weaker power (92.9%, 93.7%, and 91.2%, on average, for
CT, HT, and CLADHC respectively). CT and CLADHC
have almost the same average type I error, slightly but

Table 1: Power to detect an association, one susceptibility site simulated and included in the analysis

Tree CT CLADHC HT SbST

1 96.4 (3.3) 88.9 (3.3) 91.1 (5.1) 99.3(3.4)

2 99.0 (4.4) 95.7 (4.1) 91.3 (6.0) 99.5(5.3)

3 86.0 (2.5) 91.1 (4.7) 91.2 (4.6) 99.3(4.4)

4 96.3 (3.8) 95.6 (2.9) 91.5 (4.2) 99.3(4.6)

5 88.8 (4.1) 95.3 (3.3) 90.4 (4.7) 99.1(4.6)

6 84.5 (3.5) 88.8 (2.7) 90.7 (4.4) 99.5(4.4)

7 97.4 (4.0) 96.3 (3.7) 91.9 (4.8) 99.2(4.3)

8 99.7 (3.2) 98.5 (2.4) 91.2 (4.9) 99.4 (4.7)

9 88.1 (3.5) 94.0 (4.4) 91.3 (4.7) 99.4(4.3)

10 92.5 (2.6) 93.0 (2.9) 91.3 (4.7) 99.5(3.6)

Average 92.9 (3.5) 93.7 (3.4) 91.2 (4.8) 99.35(4.4)

Std dev.a 5.63 (0.62) 3.24 (0.76) 0.41 (0.49) 0.13 (0.54)

Sample size: 100 cases and 100 controls, 1000 replicates, penetrance vector: [0.03;0.06;0.3], frequency of the susceptibility allele: 0.205 ± 0.005. The 
corresponding type I errors are indicated in italics within brackets. For each tree, the method giving the best result is underlined. CT: Cladistic Test, 
CLADHC: test developed by Durrant et al. [29], HT: Haplotypic Test, SbST: Site by Site Test.
a Standard deviation

Table 2: Power to detect an association, one susceptibility site simulated and removed from the analysis

Tree CT CLADHC HT SbST

1 94.8 (3.8) 89.1 (3.5) 91.2 (5.6) 89.5 (3.9)

2 94.0 (3.8) 92.7 (4.1) 87.6 (5.6) 98.5 (5.3)

3 79.3 (3.2) 88.9 (4.7) 86.2 (4.7) 94.2 (4.1)

4 88.7 (2.3) 85.7 (3.1) 87.8 (4.6) 93.6 (4.4)

5 85.6 (4.3) 94.4 (4.1) 90.5 (4.5) 94.0 (4.1)

6 78.6 (3.0) 81.6 (3.3) 88.0 (4.2) 67.0 (4.2)

7 92.4 (3.8) 90.5 (3.7) 87.8 (5.2) 92.7 (4.0)

8 99.7 (3.0) 98.6 (2.8) 91.2 (4.7) 99.6 (4.5)

9 91.9 (3.7) 89.2 (4.5) 91.2 (4.8) 89.1 (4.1)

10 88.8 (2.9) 82.8 (3.0) 81.3 (4.1) 79.1 (3.5)

Average 89,38 (3.4) 89.35 (3.7) 88,28 (4.8) 89,73 (4.2)

Std dev.a 6.71 (0.6) 5.2 (0.6) 3.06 (0.5) 9.81 (0.5)

Sample size: 100 cases and 100 controls, 1000 replicates, penetrance vector: [0.03;0.06;0.3], frequency of the susceptibility allele: 0.205 ± 0.005. The 
corresponding type I errors are indicated in italics within brackets. For each tree, the method giving the best result is underlined. CT: Cladistic Test, 
CLADHC: test developed by Durrant et al. [29], HT: Haplotypic Test, SbST: Site by Site Test.
a Standard deviation
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significantly lower than the type I error of HT and SbST. In
these simulations, as the type I errors cannot be fixed a pri-
ori, powers may be difficult to compare. However, if the
type I errors of CT and CLADHC were increased, their
power would also be increased and, consequently, the dif-
ference in power with HT would be even more pro-
nounced and the difference in power with SbST would be
more reduced. In the trees showing comparable type one
error (Trees 1, 5, 7), the power of SbST is clearly higher
than the power of CT. When the susceptibility site is
removed (Table 2), the performances of the four tests are,
on average, similar (about 89%), CT being the most pow-
erful test for four trees, SbST for four other trees, HT and
CLADHC for one tree each. However, the type I errors
being slightly different, by adjusting them one expects
that CT and CLADHC could be on average, slightly more
powerful than HT and SbST.

As expected, the power is higher when the susceptibility
site is included than when it is removed. In this latter case,
the power depends on the degree of linkage disequilib-
rium (LD) between the susceptibility site and the other
sites as expressed by the maximum value of LD, referred to
as LDmax. Moreover, since the pattern of LD can be differ-
ent from one tree to another, one expects more differences
in power between trees when the susceptibility site is
removed. Indeed the standard deviation of the power is
larger in this case. This standard deviation is also particu-
larly large for SbST (σ = 9.81). This test, being an allele-
based test, is more influenced by LD than the three others
tests that are haplotype-based tests, as proved by the high

positive correlation observed between the power of SbST
to detect association and the LDmax (Spearman rank corre-
lation ρ equals 0.851, p-value < 0.01). For CT and
CLADHC, Spearman rank correlations are not significant
(p > 0.1) confirming that LD has a lesser impact on these
two tests. Therefore, the high standard deviations
observed for these two tests are probably more related to
the phylogeny of haplotypes than to the linkage
disequilibrium.

The results for model 2 and model 3, differing by the val-
ues of the penetrance vector, are presented in Table 3 and
in Table 4 respectively. There is no real difference in power
between the four tests for model 2 (about 97%). For
model 3, the power of the four tests is approximately half
the power for model 2 owing to the reduced value of the
penetrance for the genotype associated to the highest risk
in this model. In this case, SbST and CT are, on average,
the most and the less powerful test respectively

Localization of the susceptibility site(s)

The efficiency of SbST, CT and CLADHC to localize the
susceptibility site(s) when it is included among the SNPs
is presented in Figure 1 and 2. The efficiency of CT is plot-
ted against the efficiency of SbST or CLADHC. To correctly
interpret these figures, it has to be noted that the criteria
used to compare the methods are not strictly identical.
Indeed, the identified SNP is always unambiguously
detected by the SbST method, since this is the site giving
the most significant chi-square and two chi-squares are
never exactly identical. On the other hand, the

Table 3: Power to detect an association for two susceptibility sites simulated under model 2

Model 2

Tree CT CLADHC HT SbST

1 97.8 (3.7) 99.3 (3.8) 97.7 (5.0) 99.1 (6.9)

2 95.1 (3.6) 97.7 (2.9) 97.9 (5.6) 95.8 (4.3)

3 94.2 (4.9) 99.4 (4.9) 97.9 (5.1) 98.6 (4.9)

4 97.6 (4.6) 97.8 (4.6) 97.8 (5.5) 98.6 (4.6)

5 98.5 (5.3) 99.5 (4.5) 98.9 (5.7) 98.2 (7.4)

6 98.9 (4.4) 97.9 (3.9) 98.5 (5.7) 96.9 (6.6)

7 93.0 (5.1) 93.5 (4.6) 96.9 (5.6) 95.5 (5.2)

8 95.2 (6.1) 99.0 (5.3) 98.2 (6.2) 95.4 (4.2)

9 96.7 (3.6) 97.3 (3.1) 97.6 (4.1) 97.7 (4.0)

10 99.9 (4.5) 99.5 (4.0) 98.2 (60.) 99.8 (5.8)

Average 96.7 (4.6) 98.06 (4.2) 97.96 (5.45) 97.56 (5.4)

Std dev.a 2.24 (0.8) 1.83 (0.8) 0.54 (0.6) 1.58 (1.2)

Sample size: 200 cases and 200 controls, 1000 replicates, penetrance: 0.9 for the homozygotes carrying the two susceptibility alleles, 0.3 for the 
other genotypes. The corresponding type I errors are indicated in italics within brackets. For each tree, the method giving the best result is 
underlined. CT: Cladistic Test, CLADHC: test developed by Durrant et al. [29], HT: Haplotypic Test, SbST: Site by Site Test
a Standard deviation
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susceptibility site may not be the only one detected by CT
because two or more sites could have the same values of
the criteria (Vi, see the Methods section). However, in our
simulations, the susceptibility site is the only one detected
in from 80% (for 1 tree) to 100% (for 5 trees) of the rep-
licates. When the susceptibility site is not found alone, it
is almost always found with only one other site, rarely
with two other sites (<0.5% of the replicates).

For model 1 (Figure 1), CT is slightly less efficient than
SbST (for 9 trees out of 10) and more efficient than
CLADHC (for all 10 trees). For SbST, we note a high neg-
ative correlation between the efficiency to localize the
susceptibility site and the LDmax between the susceptibility
site and the other sites (Spearman rank correlation ρ equal
-0.88 with a p-value of 0.008). It shows that the presence
of a site in relatively high LD with the susceptibility site
disturbs the localization process, increasing the uncer-
tainty of the susceptibility site's identification. Interest-
ingly, there is no such statistically significant correlation
with CT and CLADHC (p > 0.08), due to the fact that these
last two tests use both the information on the whole hap-
lotypes and on their history through the tree reconstruc-
tion. The presence of sites in high LD with the
susceptibility site does not prevent these two methods
from localizing correctly the susceptibility site.

For model 2 and model 3, (Figure 2A and 2B respectively),
CT is more or at least as efficient as SbST to localize the
two sites, whatever the penetrance model. For the detec-
tion of at least one of the two sites, we can observe that,

Table 4: Power to detect an association for two susceptibility sites simulated under model 3

Model 3

Tree CT CLADHC HT SbST

1 40.7 (4.7) 54.0 (4.5) 42.0 (5.9) 47.5 (4.7)

2 31.7 (3.4) 32.7 (3.9) 43.0 (5.9) 45.8 (5.3)

3 26.8 (4.2) 47.9 (4.4) 40.7 (6.4) 45.2 (3.5)

4 34.8 (4.8) 39.2 (4.7) 38.9 (7.0) 47.0 (4.4)

5 41.5 (5.6) 49.7 (4.7) 44.2 (6.6) 37.2 (4.6)

6 42.0 (3.6) 34.8 (4.7) 42.4 (5.6) 41.3 (5.3)

7 28.6 (5.2) 32.1 (4.7) 41.6 (6.4) 39.9 (4.3)

8 33.2 (4.3) 47.2 (4.0) 42.9 (6.1) 37.7 (4.0)

9 33.5 (4.4) 39.1 (4.1) 41.2 (7.0) 48.5 (5.3)

10 65.6 (6.6) 48.1 (4.1) 42.1 (7.8) 56.9 (4.2)

Average 37.84 (4.7) 42.48 (4.4) 41.9 (6.5) 44.7 (4.6)

Std dev.a 11.07 (0.9) 7.84 (0.3) 1.45 (0.7) 5.94 (0.6)

Sample size: 200 cases and 200 controls, 1000 replicates, penetrance: 0.6 for the homozygotes carrying the two susceptibility alleles, 0.3 for the 
other genotypes. The corresponding type I errors are indicated in italics within brackets. For each tree, the method giving the best result is 
underlined. CT: Cladistic Test, CLADHC: test developed by Durrant et al. [29], HT: Haplotypic Test, SbST: Site by Site Test
a Standard deviation

Comparison of the efficiency to localize the susceptibility site between CT, and SbST or CLADHCFigure 1
Comparison of the efficiency to localize the suscepti-
bility site between CT, and SbST or CLADHC. The 
efficiency to localize the susceptibility site is measured by the 
percentage of replicates in which the simulated susceptibility 
site is either uniquely detected or detected among other 
putative sites. black circles: comparison of CT and SbST, 
crosses: comparison of CT and CLADHC. Each symbol cor-
responds to one of the ten tree topologies.
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whatever the tree, CT is always more efficient than SbST
under model 2, whereas this is only true for 6 out of the
10 trees under model 3.

Application to CARD15/NOD2 polymorphisms and Crohn 

disease

The reconstruction of the phylogenetic tree of the 33 hap-
lotypes leads to a very high number of equally
parsimonious trees. One thousand of them were retained
and analyzed. In table 5, for the two rooting methods
mfH and consH, the SNPs are ranked from the least to the
most significant (based on the Vi parameter, see the Meth-
ods section). Association is detected with CT (pmfH = 2 ×
10-5, pconsH = 3 × 10-5) and SNP 8 is selected as potential
susceptibility site. If haplotypes carrying the susceptibility
allele at SNP 8 are removed, an association can still be
detected (pmfH = 4 × 10-5, pconsH = 3 × 10-5) and SNP 12 is
identified as potential susceptibility site. When removing
haplotypes with the susceptibility allele at SNP 12, there
is still a remaining association (pmfH = 8 × 10-5, pconsH = 3 ×
10-5) and depending on the rooting method either SNP 13
(with consH) or SNP 9 (with mfH) are retained. When
haplotypes with the susceptibility allele at SNP 13 are
removed, the association test is not significant (pmfH = 2.9
× 10-1, pconsH = 1.1 × 10-1). When haplotypes with the sus-

ceptibility allele at SNP 9 are removed, the association test
is significant (pmfH = 2 × 10-5, pconsH = 5 × 10-5) and the
identified site is SNP 13 for both rooting method. In the
end, the combination of SNP 8, SNP 12 and SNP 13 is the
most parsimonious combination that can explain the sus-
ceptibility to the disease. Moreover, we can note that these
3 SNPs are those showing the highest Vi on the whole data
set. So, we finally have identified three SNPs involved in
the susceptibility to Crohn's disease.

Discussion
In this paper, we have presented a method to perform
phylogeny-based nested haplotype analysis of case/con-
trol data and introduced the cladistic test (CT). We have
shown by simulations that the CT test is approximately as
powerful to detect an association as a test that compares
haplotype distributions in cases and controls with no
prior grouping. However, a major advantage of CT
towards other haplotypic tests is the possibility of making
inferences on potential susceptibility sites. Indeed the
method of parsimony used to build the phylogeny allows
the reconstruction of character state changes on the tree
and thus the identification of the most likely susceptibility
sites. Finding the polymorphisms responsible for the sus-
ceptibility to a disease is an important issue in genetic

Comparison of the efficiency to localize the two susceptibility sites between CT and SbSTFigure 2
Comparison of the efficiency to localize the two susceptibility sites between CT and SbST. The efficiency to local-
ize the two susceptibility sites is measured by the percentage of replicates in which the two sites are detected (black circles) or 
at least one of the two sites (white circles) Each symbol corresponds to one of the ten tree topologies. (A): penetrance 0.9 for 
homozygotes carrying the two susceptibility alleles and 0.3 for all other genotypes; (B): penetrance 0.6 for homozygotes carry-
ing the two susceptibility alleles and 0.3 for all other genotypes.
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epidemiology and in the past few years, different methods
have been proposed that use linkage disequilibrium to
fine-map candidate genes and to localize disease muta-
tions ([31,32] and [33] for example) These methods are
based on the fact that a disease variant arises on a particu-
lar haplotype, the haplotype and the disease thus being
initially associated. Then, over time, this association is
broken by recombination and only a small region of the
ancestral haplotype is preserved around the disease
variant. In such models, recombination is the event of
interest. Other parameters such as mutations can be inte-
grated in the models, but they are considered as nuisance
parameters. The cladistic test developed here is different in
the sense that it is based on the reconstruction of the evo-
lutionary history of the mutations that occur to form the
haplotypes. Contrary to the other fine-mapping methods,
the event of interest is mutation, and recombination is a
nuisance parameter. Through the simulation study, we
have shown that this test is a powerful tool to suggest eti-
ological SNPs. This is also illustrated here on Crohn dis-
ease since the cladistic test was able to correctly identify
the 3 sites within the CARD15 gene that are already
reported to be involved in the disease susceptibility [30].

The cladistic test requires the building of a phylogeny of
the different haplotypes present in the sample. Different
methods are available to build haplotype phylogenies:
distance methods, parsimony methods and maximum
likelihood (ML) methods. A parsimony method was cho-
sen here because it allows the reconstruction of apomor-
phies that can be used to define potential sites involved in
the disease susceptibility and because it runs faster than
ML methods, thus allowing a simulation study. We have
compared CT with another clustering method, CLADHC,
a distance-based method that also differs from CT in the
statistical analysis (CLADHC performs regression analy-
sis, CT is based on chi-square tests). We have shown that
the power of these two tests to detect association is quite
similar, CT being slightly more powerful when one site is
simulated, and CLADHC when two sites are simulated.
For the localization of the susceptibility site, the efficiency
of the two methods is difficult to compare because CT
directly localizes the site on short sequences while
CLADHC localizes a window containing the susceptibility

site on longer sequences. The two test should thus be used
in different situations. Nevertheless CT appears to be
more efficient in our simulation conditions

In the phylogeny reconstruction, one is faced to different
problems. The first one is the choice of the ancestral
sequence to root the phylogeny. With real data, the ances-
tral sequence is usually not known, unless at least two out-
groups can be postulated (in the parsimony context). In
the absence of ancestral sequences, hypotheses have to be
made, and they are numerous, like taking the most fre-
quent haplotype, but this haplotype could be different
from one population to an other or from one sampling to
another, and this most frequent haplotype may not have
a significantly different frequency from the next most fre-
quents. Or one can take the consensus haplotype, but this
sequence may not be observed in the sample, or not be
among the most frequent sequences. In this study, our
strategy was to consider the uncertainty of the ancestral
sequence as a nuisance parameter, since our goal was not
primarily to focus on this problem and because we must
be in the same situation for all the performed simulations.
Extensive further simulations will be needed to assess the
properties of the different rooting methods. However, sev-
eral ancestral hypotheses should be considered, discussed,
and tested on real data, as we have done for the Crohn
data. Second, the presence of recombinations would
restrict the use of phylogenetic reconstruction. Indeed,
phylogenetic reconstruction is known to be biased by
recombinations [12] in a manner depending on how and
when the recombination events occur in the tree. This
context led us to simulate the history of mutations along
the haplotypes without introducing recombinations
between haplotypes. However, because in our method the
reconstructed tree has not to represent the exact history of
the haplotypes, but only gives a way to cluster them in an
appropriate way, we believe that our method can tolerate
some low degrees of recombination, as it is probably the
case for the Crohn data. Further simulations would how-
ever be required to better assess this point. Third, the
choice of the way characters are optimized on the tree is
another important point in cladistic analysis. Two classi-
cal options can be used to optimize the character state
changes along the tree: deltran, (delayed transformation)

Table 5: Cladistic analysis of Crohn's data 1000 equiparsimonious trees are studied. SNPs are ranked from the least to the most 

significant. In bold, the presumed susceptibility sites previously identified by Hugot et al. [30].

least significant --------> most significant

mfHa SNP 5 SNP 9 SNP 6 SNP 7 SNP 13 SNP 12 SNP8

consHb SNP 9 SNP 5 SNP 6 SNP 7 SNP 13 SNP 12 SNP8

a Rooting on the most frequent haplotype
b Rooting on a consensus sequence
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that favors convergences or acctran(accelerated transfor-
mation) that favors reversions. In this paper, only the
results performed with the deltran option are presented.
Simulations (one susceptibility site) have also been per-
formed with the acctran option. For the association detec-
tion, the results are very similar to those obtained with
deltran showing that this parameter does not influence
the power of the CT method to detect association in our
simulation conditions. For the localization of the suscep-
tibility site, the results are different. The method is more
efficient with the deltran option than with the acctran
option for eight trees out of ten, it is less efficient for one
tree and the results are equivalent for the last tree. It is
partly due to to the uncertainties of the character S and to
the frequency of the disease susceptibility allele. When the
frequency of the susceptibility allele is low, as in our sim-
ulations, and when S is coded "?" in some nodes of the
tree, one expects the change of S from 0 to 1 to occur later
in the tree, and the delayed option (deltran) will then be
more appropriate. Conversely, when the frequency of the
disease is large, the change of S from 0 to 1 has more
chances to occur earlier in the tree since the S mutation
can then include more cases, and the accelerated option
(acctran) will be more appropriate. However, when ana-
lyzing a real data set, it is advisable to compare the results
obtained with both options.

The variability of the results obtained with the cladistic
method is due for a minor part to the LD between the sus-
ceptibility site(s) and the other sites and for the major part
to parameters specific to the tree. Among these parame-
ters, the position of the mutation in the tree (near the root
or the leaves, sample size of the clades near the muta-
tions...) has already been reported to have an influence on
the power of cladistic methods to detect association [27].
Apart from the position of the mutation, the presence of
sites that co-mutate with the susceptibility site, the degree
of multiple mutations of the susceptibility site in the tree,
and the existence of one or more reversions for the suscep-
tibility site influence the power of the cladistic test to
detect an association, and they have an even greater
impact on the efficiency of the cladistic test to localize the
susceptibility site. As all these factors are not independent,
the evaluation of their own effects remains problematic.

The four methods compared here (CT, HT, SbST and
CLADHC) suppose that haplotypic data are available,
which is not usually the case. The most likely haplotypes
for an individual have to be reconstructed using numeri-
cal methods (for a review of these methods, see [34,35]).
The availability of familial data may help to determine the
phase of the markers and then, to obtain the most likely
haplotypes by using the genetic information of the two
parents. However, even when these familial data are not
available, the numerical methods have been shown to be

very efficient to reconstruct haplotypes, except for rare
haplotypes that may either be missed or falsely created. In
this work, since we choose to focus on the comparison
between several methods, the problem of haplotype infer-
ence is ignored. Moreover, as the four studied methods are
all based on already known or inferred haplotypes carried
by the individuals, the uncertainty due to the haplotype
inference should not play differently from one method to
another. Further extension of the CT method will take this
uncertainty into account by using, for example, likeli-
hood-based tests.

Conclusion
In conclusion, as proved by our simulations and the
Crohn example, the use of phylogenies to group haplo-
types by clades and the nested analysis of case-control
data on the basis of these clades turns out to be an inter-
esting and complementary strategy for the genetic study of
multifactorial diseases, especially to pinpoint the sites
that are likely to be involved in disease susceptibility
among the different markers identified within a gene.

Methods
Principle of the method

The material on which the method is based is a sample of
haplotypes composed of a combination of SNPs, each
haplotype being labeled either as control or as affected
depending on the phenotype of the individual. After
building the phylogenetic tree of these different haplo-
types, a series of nested homogeneity tests are performed
to detect differences in the distribution of cases and con-
trols in the different clades. Once an association is
detected, a new character is defined according to the pro-
portion of cases carrying an haplotype. Then, it is opti-
mized on the tree and the sites that significantly co-mutate
with this new character are putative susceptibility sites for
the disease.

Simulation study

To test the power of this method to detect an association
and its efficiency to precisely localize the susceptibility
site, we performed the following steps : i) simulation of
the haplotypes and choice of the susceptibility site(s) (one
or two susceptibility sites are considered) ; ii) attribution
of a status (case or control) to these haplotypes taking into
account the genetic model of the disease; iii) reconstruc-
tion of the phylogeny of haplotypes and inference of the
character state changes along the branches of the tree; iv)
association test: nested analysis of the case/control ratio in
the clades; v) localization of the susceptibility site using
the equiparsimonious (ie, all the trees that have the min-
imum number of character state changes) ; vi) estimation,
by simulations, of the power to detect the association
between haplotypes and the disease and comparison with
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other methods; vii) estimation of the efficiency to localize
susceptibility sites and comparison with other methods.

Haplotype simulation

24 different haplotypes are simulated using the TREE-
VOLVE software (version 1.32) [36]. An ancestral haplo-
type sequence of 20 sites is randomly produced, a guide
tree is generated using the coalescent model without
recombination and the evolution of this ancestral
sequence along the tree is simulated to obtain a sample of
24 different haplotypes. Since TREEVOLVE can only sim-
ulate the evolution of DNA sequences (4 nucleotides) and
not the evolution of bi-allelic markers, we set the
frequencies for bases A and T to very low values (A = T =
0.001 and G = C = 0.498) in order to obtain an ancestral
sequence composed only of G and C, as an equivalent of
SNPs coded by 0/1 character states. The mutation rate is
set to 2 × 10-6, and the substitution rates are chosen so that
only G-C transversions could occur: A - C = 0.001, A - G =
0.001, A - T = 0.001, C - T = 0.001, G - T = 0.001, G - C =
0.995. No heterogeneity in the substitution rate among
sites is specified. The population size was set to 100,000
and its growth was stationary with no subdivision. Once
the haplotypes are obtained by simulation, the suscepti-
bility sites are chosen among the 20 sites. For the simula-
tions with only one susceptibility site, the program picks
up the first site in the sequence having a minor allele fre-
quency (p) in the sample of haplotypes within the range F
<p <F + 0.01 where F is a predefined allele frequency (in
our simulations, F = 0.20). For two simulated sites, the
program picks up the first two simulated sites verifying a
user-defined constraint. In our simulations, the two sites
are chosen such that f (A1B1) = f (A1B2) = f (A2B1) = f
(A2B2) = 0.25, A1 and A2 being the two alleles at the first
site and B1 and B2, the two alleles at the second site. When
no site is found satisfying these conditions, a new set of
haplotypes is simulated until the required conditions are
obtained.

This entire procedure is repeated ten times to generate ten
different data sets. The pairwise linkage disequilibrium (r2

measure, mean values for the 1000 replicates) and the tree
topologies corresponding to these ten data sets are pro-
vided as Additional file 1 and 2.

Attribution of disease status

To generate the genotypes of each individual, pairs of hap-
lotypes are sampled at random with replacement and the
disease status (case or control) is determined by his geno-
type at the susceptibility site(s) and by the penetrances. In
our simulations, three disease models are studied, involv-
ing either one susceptibility site (model 1) or two interact-
ing susceptibility sites (model 2 and model 3). The first
model is the disease model described in Bourgain et al.
[37] that roughly corresponds to the effect of ApoE4 in

Alzheimer's disease [38]. We set the penetrance of the
three genotypes DD, Dd and dd to respectively PDD = 0.03,
PDd = 0.06, Pdd = 0.30, d being the disease susceptibility
allele. For model 2 and model 3, an at-risk haplotype
formed by the combination of the alleles A2 at the first
locus and B2 at the second locus is defined. The pene-
trance associated to the genotype A2B2A2B2 is set to 0.9 for
model 2 and to 0.6 for model 3. All the other penetrances
are set to 0.3 for both models.

The sampling process is carried on until N cases and N
controls are obtained (N = 100 or 200 in our simulations,
depending on the number of simulated susceptibility
sites). This constitutes a replicate. As the haplotypes are
sampled randomly from the set of 24 different haplotype,
they are almost equi-frequent in the sample of cases and

controls, and their frequencies are close to .

Phylogeny of haplotypes

All the different haplotypes are used to build a phyloge-
netic tree by a parsimony method which consists in
choosing the tree that minimizes the number of mutation
events [39]. The PAUP software (version 4.0b10 [40]) is
used to reconstruct the tree. A heuristic search is per-
formed, using stepwise addition and TBR (tree bisection
and reconnection). All sites are equally weighted, and
changes from allele 0 to allele 1 and from allele 1 to allele
0 are equally allowed for all sites, including the suscepti-
bility site (unordered option). Among the list of all parsi-
monious trees, only the first one obtained is used for the
association test, for computation time reasons and
because we found that identical results are obtained for
more than 98% of the equiparsimonious trees (data not
shown). For the localization of susceptibility sites, all the
equiparsimonious trees (or up to 100 different trees if
there are too many equiparsimonious trees) are analyzed.
The trees are rooted using the real ancestor obtained with
TREEVOLVE. The character states are inferred along the
branches by using the classical option deltran (delayed
transformation), but acctran (accelerated transformation)
was also investigated.

Association test

Starting from the root of the tree, series of nested homo-
geneity tests comparing the number of cases and controls
in different clades are performed. The principle of the
method is explained in Figure 3. Briefly, at each level of
the tree, homogeneity in the distribution of cases and con-
trols is tested among all the n clades defined at this level.
If the test is significant, an association is detected and the
analysis ends. If the test is not significant, one homogene-
ity test is performed between all the sub-clades descend-
ing from the n clades.

1

24
0 042= .
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P-values of the homogeneity tests are calculated by Pear-
son chi-square tests except when only two clades are com-
pared in which case a Fisher exact test is performed, and
except when more than two clades are tested and the sam-
ple size is less than four in a category. In this latter case p-
values are estimated by permutation tests.

The influence of the LD on the power of the different tests
is assessed by using the r2 measure of LD.

Localization of the susceptibility sites

For each replicate, several equiparsimonious trees may
exist. We will analyze the T first equiparsimonious given
by PAUP, T being limited to 100 for computation time
reasons. For a tree t, a new character S is allocated to each
haplotype h. The state of S is "0", "1" or "?" depending on
the proportion (ph) of cases carrying the haplotype h com-
pared to the proportion p0 of cases in the whole sample.

if , S is coded "0" (high number

of controls);

if , S is coded "1" (high number

of cases);

else, S is coded "?" (missing data).

with nh being the number of individuals carrying the hap-
lotype h.

This character S is optimized on the T equiparsimonious
trees using PAUP and the deltran option. For each site i,

let  and  be the observed number of times each tran-

sition (0→1 for  and 1→0 for ) co-mutates with a

0→1 change of the character S on tree t. Let  and  be
the expected number of co-mutations on tree t under the
hypothesis of a random distribution of the mutations on
tree t and an equal probability of mutation on each
branch.

Description of the nested clade analysisFigure 3
Description of the nested clade analysis. (A) shows the homogeneity test performed at level k (between clades C1 and 
C2). If it is not significant (B), a test will be performed at the following level (k+1), between all the sub-clades descending from 
clades C1 and C2, i.e between clades C1.1, C1.2, C2.1 and C2.2 (3 degree of freedom). If it is significant the analysis ends because an 
association is detected.
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where  (resp. ) is the number of 0→1 (resp. 1→0)
transitions of the site i on tree t;

st is the number of 0→1 transition of the character S on
tree t;

bt is the number of branches of tree t.

Then, for each site i on tree t, we measure the correlated

evolution of the site i and the character S, by defining 

(resp. ) as follow:

then, for the T equiparcimonious trees, we define 

(resp. ) as follow:

Finally, Vi is defined as the max between  and . The
site or the two sites corresponding to the highest Vi are
selected as putative susceptibility sites

Estimation of power and efficiency

For each of the ten samples of 24 haplotypes simulated
along the ten different tree topologies, the process
detailed above (attribution of disease status, phylogenetic
reconstruction, association test and localization of the
susceptibility site) is repeated 1000 times to obtain 1000
replicates, each of them including N cases and N controls.
The power to detect the association is measured by count-
ing the proportion of replicates in which a significant het-
erogeneity in the distribution of cases and controls is
detected between clades. The efficiency of CT to localize
the true susceptibility site is simply evaluated as the
number of times, among the 1000 simulations, the true
susceptibility site is among the detected sites. When two
susceptibility sites are simulated, we evaluate the number
of times the two sites are detected and the number of
times at least one of the two sites is detected.

The test using the cladistic method (CT) is compared to
three other association tests: i) a haplotypic test (HT) that
compares the haplotype distributions in cases and con-

trols: if h different types of haplotypes are observed, a chi-
square test with h - 1 degree of freedom (df) is performed.
As with the CT test, when sample sizes are small, a permu-
tation procedure is used to perform the chi-square test.
This HT test is only used to test for association and not to
localize the susceptibility sites. ii) An allelic test, referred
to as Site by Site Test (SbST), that compares the allele dis-
tributions in cases and controls at each site by a chi-
square: if the number of sites is s, then s chi-squares, each
with one df, are performed. The site or the two sites that
give the most significant results are proposed as suscepti-
bility sites. iii) A test based on CLADHC, the program
developed by Durrant et al. [29]. In this test, the data set
is analyzed by overlapping windows sliding along the
haplotypes. In each window, a tree is reconstructed using
a distance method, and a regression analysis is performed
at each level of the tree (nested analysis). The level of the
tree that maximizes the evidence of disease marker associ-
ation in the likelihood-ratio test is selected. For each win-
dow, the program also provides a significant threshold
calculated using the Bonferroni correction. In our simula-
tions, a window size of 6 is selected. We consider the asso-
ciation as detected when at least one of the windows is
significant. Concerning the localization of the susceptibil-
ity site, CLADHC can only find a window containing the
susceptibility site, but not the susceptibility site itself.
Therefore, we only use CLADHC in the case of one suscep-
tibility site and we consider the localization as correct
when the window with the maximum value of the statistic
contains the susceptibility site.

For CT, SbST and CLADHC, we are confronted to a prob-
lem of multiple testing. When a real data set is analyzed,
a permutation procedure can be used to estimate p-values
of the association tests that are corrected for multiple test-
ing. This procedure is very time-consuming and cannot be
used on the simulations we have performed here. As an
example, the 100,000 repetitions for the Crohn data run
in about 24 hours on a Pentium III, 930 MHz, 512 Mo of
RAM. Therefore, for SbST and CT, we estimate the nomi-
nal type I error required to obtain a global type-one error
of 5% by a simulation under the null hypothesis of no
association between the studied sites and the disease
(5000 replicates). We found that for the different simula-
tion conditions studied here, these nominal errors are
equal to 1% for CT and varies from 0.2 to 0.4% for SbST.
For the analysis with CLADHC, the program provides a
significant threshold calculated using Bonferroni
correction. As the Bonferroni correction is very conserva-
tive, to obtain similar type I errors with CLADHC as with
CT, nominal type I errors were set to values varying from
15 to 17% for simulations with one susceptibility site and
from 20 to 25% for simulations with two susceptibility
sites.
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Analysis of real data on Crohn disease

The data set is described in a paper of Hugot et al. (2001)
[30] and includes 232 nuclear families with two affected
children and their parents genotyped for 13 SNPs in the
CARD15/NOD2 gene. Haplotypes were reconstructed in
these families using GENEHUNTER 2.0b[41]. In each
family, one affected child is selected at random to create
the case sample (his two haplotypes are labeled cases).
The control sample is formed with the parental haplo-
types non transmitted to the selected children. The phylo-
genetic reconstruction assumes that no recombination
has occurred between the SNPs. To determine if this was
true for the different SNPs tested here or at least for a sub-
set of them, linkage disequilibrium (LD) is estimated
between all the SNPs. From the pairwise LD, a group of 7
SNPs (5, 6, 7, 8, 12, 9 and 13) can be identified as forming
a block in strong LD among which no or very few
recombinations are likely to have occurred (see Addi-
tional file 3). Interestingly, this same block of 7 SNPs was
described by Vermeire et al. [42] in the CARD15/NOD2
gene. Only these 7 SNPs that form 33 different haplotypes
are used in the cladistic analysis. The phylogenetic trees
are reconstructed using the same parameters as in the
simulations. However here, contrary to the simulations,
the ancestral sequence being not known, two different
analysis are performed using as ancestral sequence either
the most frequently observed haplotype in our sample
(mfH) or a consensus sequence formed by the combina-
tion of the most frequent alleles at each SNP (consH). For
the association test, p-values are estimated on the first
equiparsimonious tree obtained by PAUP, using an algo-
rithm similar to the one described in a paper of Becker and
Knapp (2004) [43]. This permutation process corrects for
multiple testing in a lesser conservative way than the Bon-
ferroni correction because it takes into account the
dependency between the tests. For the localization,
among all the equiparsimonious trees, 1000 of them are
retained and analyzed with CT.

Authors' contributions
CB perfomed the simulation analyses, contributed to the
conception of the study, to the elaboration of the algo-
rithm and wrote the manuscript. VD contributed to the
elaboration of the algorithm. J-PH provided the CARD15
data. PD and EG contributed to the design and to the con-
ception of the study and to the manuscript preparation.

Additional material

Acknowledgements
We wish to thank Marie-Claude Babron and two anonymous reviewers for 

helpful comments and Arnaud Legrand for letting us use one of his perl 

function. We are also grateful to Habib Zouali and Suzanne Lepage from the 

fondation Jean Dausset for providing us with Crohn data and to Caroline 

Durrant for kindly providing us with the software CLADHC. Many thanks 

to the runtime team from the LaBRI for letting us run a part of our simula-

tions on their cluster.

References
1. Collins FS: Preparing health professionals for the genetic

revolution.  Jama 1997, 278:1285-1286.
2. Collins FS, Brooks LD, Chakravarti A: A DNA polymorphism dis-

covery resource for research on human genetic variation.
Genome Res 1998, 8:1229-1231.

3. Schork NJ, Fallin D, Lanchbury S: Single nucleotide polymor-
phisms and the future of genetic epidemiology.  Clin Genet
2000, 58:250-264.

4. Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm
MG: Testing association of statistically inferred haplotypes
with discrete and continuous traits in samples of unrelated
individuals.  Hum Hered 2002, 53:79-91.

5. Akey J, Jin L, Xiong M: Haplotypes vs single marker linkage dis-
equilibrium tests: what do we gain?  European J of Hum Genet
2001, 9:291-300.

6. Douglas JA, Boehnke M, Guillanders E, Trent JM, Gruber SB: Exper-
imentally-derived haplotyes substantially increase the effi-
ciency of linkage disequilibrium studies.  Nat Genet 2001,
28:361-364.

7. Fallin D, Cohen A, Essioux L, Chumakov I, Blumenfeld M, Cohen D,
Schork NJ: Genetic analysis of case/control data using esti-
mated haplotype frequencies: application to APOE locus
variation and Alzheimer's Disease.  Genome Res 2001,
11:143-151.

Additional File 1

Average pairwise linkage disequilibrium for the 10 simulated date 

sets. The average pairwise LD (over 1000 replicated) is calculated using 

the r2 measure for each of the 10 tree topologies (T1 to T10). The matrices 

are plotted with GOLD[44].

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2156-6-24-S1.pdf]

Additional File 2

Tree topologies of the 10 simulated date sets

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2156-6-24-S2.pdf]

Additional File 3

Pairwise linkage disequilibrium for the Crohn data. (A) shows the 

pairwise linkage disequilibrium (LD) calculated with the D' measure. (B) 

shows the LD calculated with the r2 measures. The matrices are plotted 

with GOLD [44]. A high degree of LD can be observed. The differences 

between the r2 and the D' values are explained by the difference in the 

allelic frequency for the different SNPs.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2156-6-24-S3.pdf]

http://www.biomedcentral.com/content/supplementary/1471-2156-6-24-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2156-6-24-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2156-6-24-S3.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9333274
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9333274
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9872978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9872978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11076050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11076050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12037407
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12037407
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12037407
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11443299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11443299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11443299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11156623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11156623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11156623


Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 

disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:

http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Genetics 2005, 6:24 http://www.biomedcentral.com/1471-2156/6/24

Page 13 of 13

(page number not for citation purposes)

8. Tiret L, Amouyel P, Rakotovao R, Cambien F, Ducimetière P: Test-
ing for association between disease and linked marker loci: a
log-linear-mode analysis.  Am J Hum Genet 1991, 48:926-934.

9. Nielsen DM, Ehm MG, Zaykin DV, Weir BS: Effect of two- and
three-locus linkage disequilibrium on the power to detect
marker/phenotype association.  Genetics 2004, 168:1029-1040.

10. Zhao JH, Curtis D, Sham PC: Model-free analysis and permuta-
tion tests for allelic associations.  Hum Hered 2000, 50:133-139.

11. Templeton AR, Boerwinkle E, Sing CF: A cladistic analysis of phe-
notypic associations with haplotypes inferred from restric-
tion endonuclease mapping. I. Basic theory and an analysis of
alcohol dehydrogenase activity in Drosophila.  Genetics 1987,
117:343-351.

12. Schierup MH, Hein J: Consequences of recombination on tradi-
tional phylogenetic analysis.  Genetics 2000, 156:879-891.

13. Gabriel SB, Scaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B,
Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi
C, Adeyamo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D:
The structure of haplotype blocks in the human genome.  Sci-
ence 2002, 296:2225-2229.

14. Templeton AR, Sing CF, Kessling A, Humphries S: A cladistic anal-
ysis of phenotypic associations with haplotypes inferred from
restriction endonuclease mapping. II. The analysis of natural
populations.  Genetics 1988, 120:1145-1154.

15. Templeton AR, Crandall KA, Sing CF: A cladistic analysis of phe-
notypic associations with haplotypes inferred from restric-
tion endonuclease mapping and DNA sequence data. III.
Cladogram estimation.  Genetics 1992, 132:619-633.

16. Templeton AR, Sing CF: A cladistic analysis of phenotypic asso-
ciations with haplotypes inferred from restriction endonu-
clease mapping. IV. Nested analysis with cladogram
uncertainty and recombination.  Genetics 1993, 134:659-669.

17. Templeton AR: A cladistic analysis of phenotypic associations
with haplotypes inferred from restriction en-donuclease
mapping or DNA sequencing. V. analysis of case/control
sampling designs: Alzheimer's disease and the Apolipopro-
tein E locus.  Genetics 1995, 140:403-409.

18. Haviland MB, Kessling AM, Davignon J, Sing CF: Cladistic analysis
of the Apolipoprotein AI-CIII-AIV gene cluster using a
healthy French Canadian sample. I. Haploid analysis.  Ann
Hum Genet 1995, 59:211-231.

19. Keavney B, McKenzie CA, Connell JMC, Julier C, Ratcliffe PJ, Sobel E,
Lathrop M, Farrall M: Measured haplotype analysis of the angi-
otensin-I converting enzyme gene.  Hum Mol Genet 1998,
7(11):1745-1751.

20. Zhu X, Cooper RS, Chen G, Luke A, Eltson R: Localization of the
Q1 mutation by cladistic analysis.  Genet Epidemiol 2001,
21(Suppl 1):S594-S599.

21. Wang GQ, Pietro MD, Roeder K, Heng CK, Bunker CH, Hamman RF,
Kamboh MI: Cladistic analysis of human Apolipoprotein A4
polymorphisms in relation to quantitative plasma lipid risk
factors of coronary heart disease.  Ann of Hum Genet 2003,
67:107-124.

22. Kittles RA, Long JC, Bergen AW, Eggert M, Virkkunen M, Linnoila M,
Goldman D: Cladistic association analysis of Y chromosome
effects on alcohol dependence and related personality traits.
Proc Natl Acad Sci 1999, 96:4204-4209.

23. Lobos EA, Todd RD: Cladistic analysis of disease association
with tyroxine hydroxylase : Application to manic-depressive
disease and alcoholism.  Am J Med Genet 1997, 74:289-295.

24. Lobos E, Todd RD: Association analysis in an evolutionary con-
text: cladistic analysis of the DRD2 locus to test for associa-
tion with alcoholism.  Am J Med Genet 1998, 81:411-419.

25. Darlu P, Génin E: Cladistic analysis of haplotypes as an attempt
to detect disease susceptibility.  Genet Epidemiol 2001, 21(Suppl
1):S602-S607.

26. Heng CK, Low PS: Cladistic analysis: its application in associa-
tion studies of complex diseases.  Ann Acad Med Singapore 2000,
29:313-321.

27. Seltman H, Roeder K, Devlin B: Transmission/Disequilibrium
test meets measured haplotype analysis: family-based asso-
ciation analysis guided by evolution of haplotypes.  Am J Hum
Genet 2001, 68:1250-1263.

28. Seltman H, Roeder K, Devlin B: Evolutionary-based association
using haplotype data.  Genet Epidemiol 2003, 25:48-58.

29. Durrant C, Zondervan KT, Cardon LR, Hunt S, Deloukas P, Morris
AP: Linkage disequilibrium mapping via cladistic analysis of
single-nucleotique polymorphism haplotypes.  Am J Hum Genet
2004, 75:35-43.

30. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cézard JP, Belaiche J,
Almer S, Tysk C, O'Morain CA, Gassull M, Binder V, Finkel Y, Cortot
A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J,
Colombel JF, Sahbatou M, Thomas G: Association of NOD2
leucin-rich repeat variants with susceptibility to Crohn's
disease.  Nature 2001, 411:599-603.

31. Lazzeroni LC: Linkage disequilibrium and gene mapping: an
empirical least-square approach.  Am J Hum Genet 1998,
62:159-170.

32. McPeek MS, Strahs A: Assessment of linkage disequilibrium by
the decay of haplotype sharing with application to fine-scale
genetic mapping.  Am J Hum Genet 1999, 65:858-875.

33. Rannala B, Reeve JP: High-resolution multipoint linkage-dise-
quilibrium mapping in the context of a human genome
sequence.  Am J Hum Genet 2001, 69:159-178.

34. Zhao H, Pfeiffer R, Gail MH: Haplotype analysis in population
genetics and association studies.  Pharmacogenomics 2003,
4(2):171-178.

35. Niu T: Algorithms for inferring haplotypes.  Genet Epidemiol
2004, 27:.

36. Grassly NC, Rambaut A: Treevolve, version 1.32.  2000.
37. Bourgain C, Génin E, Quesneville H, Clerget-Darpoux F: Search for

multifactorial disease susceptibility genes in founder
populations.  Ann Hum Genet 2000, 64:255-265.

38. APOE T, Alzheimer Disease meta analysis consortium: Effects of
age, gender and ethnicity on the association between apoli-
poprotein E genotype and Alzheimer disease.  J Am Med Assoc
1997, 278:1349-1356.

39. Felsenstein J: Inferring phylogenies, Sinauer Associates, Inc. 2004 chap.
Chapter one: Parsimony methods :1-18. [ISBN:0878931775].

40. Swofford DL: PAUP Phylogenetic Analysis Using Parcimony.
Version 4.0b10.  Sunderland, Massachusetts: Sinauer Associates;
2002. 

41. Daly MJ, Kruglyak L, Pratt S, Houstis N, Reeve MP, Kirby A, Lander
ES: Genehunter, version 2.1.  2001.

42. Vermeire S, Wild G, Kocher K, Cousineau J, Dufresne L, Bitton A,
Langelier D, Pare P, Lapointe G, Cohen A, Daly MJ, Rioux J: CARD15
genetic variation in a Quebec population: prevalence, geno-
type-phenotype relationship, and haplotype structure.  Am J
Hum Genet 2002, 71:74-83.

43. Becker T, Knapp M: A powerful strategy to account for multi-
ple testing in the context of haplotype analysis.  Am J Hum
Genet 2004, 75(4):561-570.

44. Abecasis GR, Cookson WO: GOLD-graphical overview of link-
age disequilibrium.  Bioinformatics 2000, 16(2):182-183.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2018040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2018040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2018040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15514073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15514073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15514073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10799972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10799972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2822535
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2822535
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2822535
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11014833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11014833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12029063
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12029063
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3147219
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3147219
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3147219
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1385266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1385266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1385266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8100789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8100789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8100789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7635303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7635303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7635303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7625767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7625767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7625767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9736776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9736776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11793744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11793744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10097188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10097188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9184313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9184313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9184313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9754627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9754627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9754627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11793746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11793746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10976384
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10976384
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11309689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11309689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11309689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12813726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12813726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15148658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15148658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11385576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11385576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11385576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9490574
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9490574
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10445904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10445904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10445904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11410841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11410841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11410841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12605551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12605551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11409410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11409410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11409410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12019468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12019468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12019468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15290652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15290652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10842743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10842743
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Association test
	Table 4

	Localization of the susceptibility site(s)
	Application to CARD15/NOD2 polymorphisms and Crohn disease
	Table 5


	Discussion
	Conclusion
	Methods
	Principle of the method
	Simulation study
	Haplotype simulation
	Attribution of disease status
	Phylogeny of haplotypes
	Association test
	Localization of the susceptibility sites
	Estimation of power and efficiency

	Analysis of real data on Crohn disease

	Authors' contributions
	Additional material
	Acknowledgements
	References

