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Abstract

Basic calcium phosphate (BCP) crystals, including
hydroxyapatite, octacalcium phosphate (OCP) and carbonate-
apatite, have been associated with severe osteoarthritis and
several degenerative arthropathies. Most studies have
considered the chondrocyte to be a bystander in the
pathogenesis of calcium crystal deposition disease, assuming
that synovial cell cytokines were the only triggers of chondrocyte
activation. In the present study we identified direct activation of
articular chondrocytes by OCP crystals, which are the BCP
crystals with the greatest potential for inducing inflammation.
OCP crystals induced nitric oxide (NO) production and
inducible nitric oxide synthase (NOS) mRNA expression by
isolated articular chondrocytes and cartilage fragments, in a
dose-dependent manner and with variations over time. OCP
crystals also induced IL-1β mRNA expression. Using

pharmacological and cytokine inhibitors, we observed that OCP
crystals induced NO production and inducible NOS mRNA
activation were regulated at both the transcriptional and the
translational levels; were independent from IL-1β gene
activation; and involved p38 and c-Jun amino-terminal kinase
(JNK) mitogen-activated protein kinase (MAPK) pathways, as
further confirmed by OCP crystal-induced p38 and JNK MAPK
phosphorylation. Taken together, our data suggest that the
transcriptional inducible NOS response to OCP crystals
involved both the p38 and the JNK MAPK pathways, probably
under the control of activator protein-1. NO, a major mediator of
cartilage degradation, can be directly produced by BCP crystals
in chondrocytes. Together with synovial activation, this direct
mechanism may be important in the pathogenesis of destructive
arthropathies triggered by microcrystals.

Introduction
Crystals of calcium pyrophosphate dihydrate (CPPD) and

basic calcium phosphate (BCP), including octacalcium phos-

phate (OCP), carbonate-substituted apatite and tricalcium

phosphate, are the calcium-containing crystals most com-

monly associated with articular and periarticular disorders.

BCP crystals can cause acute attacks of inflammatory arthritis

[1] or acute calcific periarthritis [2], and in a few patients they

result in erosive arthritis [3]. More often, they are associated

with an exaggerated form of osteoarthritis (OA) or with joint

destruction [4-7]. The prevalence of CPPD and BCP microc-

rystals in patients with joint disease increases significantly with

ageing. These microcrystals have been identified in 60% of

joint fluids from patients with knee OA undergoing total arthro-

plasty [7,8]. More specifically, the presence of BCP crystals

correlates strongly with radiographic evidence of cartilaginous

degeneration [7,8]. Physical interactions between chondro-

cytes and BCP crystals could occur in vivo in various settings.

BCP crystals can be released from subchondral bone through

cartilage lesions. Interestingly, hypertrophic chondrocytes,

which are present in the superficial zone of osteoarthritic
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Eagle's medium; FBS = foetal bovine serum; IL = interleukin; JNK = c-Jun amino-terminal kinase; L-NAME = NG-nitro-L-arginine methyl ester; OA = 
osteoarthritis; OCP = octacalcium phosphate; MAPK = mitogen-activated protein kinase; MMP = matrix metalloproteinase; MSU = monosodium 
urate; NO = nitric oxide; NOS = nitric oxide synthase; poly-HEMA = poly-(2-hydroxyethyl methacrylate); RT-PCR = reverse trasncription polymerase 
chain reaction; TBS-T = Tris-buffered saline-Tween; TNF = tumour necrosis factor.
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cartilage, can produce calcifying apoptotic bodies, resulting in

BCP formation in the perichondrocytic milieu [9].

The mechanism of cartilage degradation in BCP crystal-asso-

ciated OA remains unclear. Hypotheses include synovial lining

cell stimulation by BCP crystals, resulting in synovial cell pro-

liferation [10-12], release of matrix-degrading molecules [13-

20], and secretion of inflammatory mediators [21] and

cytokines that, in turn, stimulate chondrocytes to generate

matrix-degrading molecules [12,13,16,22,23].

Most studies have considered chondrocytes as passive

bystanders in the pathogenesis of BCP crystal associated OA

and CPPD disease. However, in primary OA chondrocytes

appear to play a major role in cartilage damage. In immunohis-

tochemistry studies chondrocytes expressed larger amounts

of inflammatory mediators and cytokines, such as IL-1β and

tumour necrosis factor (TNF)-α than did OA synoviocytes

[24], suggesting an active role for chondrocytes in cartilage

destruction. In vitro, BCP crystals induced prostaglandin

secretion [13], collagenase [12] and metalloproteinase

(MMP)-13 mRNA accumulation, and MMP-13 protein secre-

tion by articular chondrocytes [16].

Osteoarthritic lesions may result from an imbalance between

anabolic and catabolic processes. Nitric oxide (NO) is a pleio-

tropic mediator that is intimately involved in the OA catabolic

process [25-28]. NO is synthesized via L-arginine oxidation by

a family of nitric oxide synthases (NOSs). Of the three known

NOS isomers, two are constitutively expressed (neural

ncNOS or NOS-1 and endothelium ecNOS or NOS-3) and

one is inducible (iNOS or NOS-2). Expression of iNOS has

been demonstrated in various cell types. Within the joint,

chondrocytes may be the main cell source of NO, and iNOS

expression is increased in human OA cartilage [29]. In animal

models of OA, treatment with the specific iNOS inhibitor N-

iminoethyl-L-lysine significantly reduced the progression of

structural changes [30,31]. This structural effect was accom-

panied by reductions in MMP synthesis, IL-1β and prostaglan-

din E2 production, and chondrocyte apoptosis [32].

BCP crystals are heterogeneous in terms of their ultrastruc-

ture and physicochemical composition, and previous studies

[33,34] have shown differences in their phlogistic properties.

We studied OCP crystals, which are the BCP crystals that

produced the greatest degrees of inflammation in earlier stud-

ies [33,34]. Although OCP is one of the BCP crystals found in

joints [35], its biological significance is unclear. It could be del-

eterious to cartilage at some stages, resulting in inflammatory

reaction, but it could be also a precursor to hydroxyapatite,

which is a BCP crystal found at greater concentration in joints

but with reduced inflammatory capability. We postulated a

direct effect of BCP crystals on chondrocyte activation.

To investigate this hypothesis, we looked for effects of OCP

crystals on NO production by bovine cartilage organ cultures

and isolated articular chondrocytes. We also examined

whether OCP crystals activated iNOS expression through the

protein kinase signal transduction pathway involving Erk1/2

(p42/44), p38, and c-Jun amino-terminal kinase (JNK)

mitogen-activated protein kinases (MAPKs). Finally, we inves-

tigated whether IL-1β release triggered by OCP crystals acted

as a secondary messenger of OCP crystal induced iNOS

expression.

Materials and methods
Reagents

Foetal bovine serum (FBS) was obtained from Dominique Dut-

scher (Brumath, France). Dulbecco's modified Eagle's

medium (DMEM) with high glucose (4.5%), phosphate-buff-

ered saline, penicillin, streptomycin, fungizone, Taq polymer-

ase, M-MLV reverse transcriptase, dNTP set, primers and

TRIzol reagents were obtained from Invitrogen (Cergy-Ponto-

ise, France). The pharmacological MAPK inhibitors PD98059

and SB203580, and JNK II inhibitor were purchased from Cal-

biochem (San Diego, CA, USA). NG-nitro-L-arginine methyl

ester (L-NAME), cycloheximide, actinomycin D, pepstatin,

aprotinin, leupeptin, phenylmethyl sulfofluoride, poly-(2-

hydroxyethyl methacrylate; poly-HEMA) and bacterial colla-

genase type II were obtained from Sigma-Aldrich (St Quentin

Fallavier, France). IL-1β and IL-1 receptor antagonist (IL-1ra)

were purchased from R&D systems Inc. (Abingdon, Oxford,

UK).

Antibodies

Phospho-specific JNK (Thr183/Tyr185) and p38 (Thr180/

Tyr182), and total JNK and p38 antibodies were purchased

from Cell Signaling Technology (Ozyme, St Quentin Yvelines,

France). Polyclonal horseradish peroxidase-conjugated goat

anti-rabbit IgG was obtained from Sigma-Aldrich.

Articular cartilage organ cultures

Carpal–metacarpal joints of calves (<3 years of age) were pro-

vided by a local French slaughterhouse. Cartilage disks (15–

25 mg) were aseptically dissected from articular cartilage

slices and washed three times in DMEM containing 100 µg/ml

streptomycin, 100 IU/ml penicillin, and 0.25 µg/ml fungizone.

Disks were transferred to 96-well, flat-bottomed plates (TPP;

ATGC biotechnologie, Marne la Vallée, France) containing

DMEM with high glucose supplemented with 10% heat-inac-

tivated FBS and antibiotics (hereafter referred to as 'complete

medium') and cultured at 37°C in a humidified atmosphere

supplemented with 5% carbon dioxide. The medium was

changed 72 hours later to 200 µl DMEM with 1% FBS, and

OCP crystals or recombinant human IL-1β were added 24

hours later.
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Chondrocyte isolation and culture

Bovine chondrocytes were isolated from carpal–metacarpal

cartilage, as described by Kuettner and coworkers [36].

Briefly, articular cartilage was cut into small pieces, and

chondrocytes were released by collagenase digestion using

bacterial collagenase type II (0.2% in DMEM) for 20 hours at

37°C with gentle shaking. Chondrocytes were then collected

through a 100 µm nylon cell strainer (Cell strainer, Falcon,

VWR International, Fontenay sous Bois, France), washed, and

plated at high density (107cells/ml) in complete medium. At

subconfluence, cells were starved in DMEM with 1% FBS for

24 hours and then harvested and replated at 106 cells/ml in

96-well, round-bottomed (for nitrite production studies) or 24-

well (for MAPK or iNOS activation studies) plates coated with

10% poly-HEMA [37]. Poly-HEMA coating prevents cell adhe-

sion and preserves the articular cartilage phenotype for up to

several weeks [38].

Octacalcium phosphate crystal preparation

Sterile, pyrogen-free OCP crystals (homogeneity in size 1.5 ±

0.5 µm; Ca/[P+CO3] ratio 1.33) were synthesized, as

described previously [33,39], by suspending calcium hydro-

gen phosphate dihydrate (5 g) in 300 ml of an aqueous solu-

tion of diammonium hydrogen phosphate (5 g) at 37°C for 48

hours. OCP crystal size and morphology were determined

using a Phillips EM 300 transmission electron microscope

(Philips, Eindhoven, The Netherlands) and their nature by X-ray

diffraction (INEL CPS 120 diffractometer; Enraf Nonius SA,

Sevran, France) and infrared spectroscopy (Perkin-Elmer FTIR

1760 spectrometer; Courtaboeuf, France) before and after

sterilization. Sterilization was by exposure to 60Co γ-radiation

by the CisBio International Company (Laboratoire des Pro-

duits d'Irradiation at the Commissariat à l'Energie Atomique,

Saclay, France). OCP crystals were confirmed to be pyrogen-

free, as shown previously [33].

Determination of nitrite level

NO accumulation was measured by the Griess reaction. Con-

fluent articular chondrocytes were seeded at a concentration

of 106 cells/ml as described above. Chondrocytes were

treated with various pharmacological inhibitors for 60 min, and

then stimulated by various doses of OCP crystals or IL-1β. For

the indicated times in the cell cultures and 4 days later in the

cartilage organ culture, 50 µl cell-free supernatants from

chondrocyte or articular cartilage organ cultures were mixed

with 150 µl Griess reagent. The NO2
- concentrations were

immediately determined by measuring absorbance at 550 nm

in an enzyme-linked immunosorbent assay plate reader. NO

measurements are expressed as µmol/l in culture superna-

tants and as µmol/l per mg cartilage where appropriate.

Preparation of cytoplasmic extracts for mitogen-

activated protein kinase studies

Nonadherent chondrocytes were treated with various pharma-

cological inhibitors for 60 min then stimulated with OCP crys-

tals or IL-1β. For the indicated times, chondrocytes were

collected and placed in lysis buffer (20 mmol/l Tris.HCl [pH

7.5], 150 mmol/l NaCl, 1% Triton X-100, 1 mmol/l EDTA, 1

mmol/l EGTA, 1 mmol/l sodium orthovanadate, 2.5 mmol/l

sodium pyrophosphate, 1 mmol/l β-glycerophosphate, 1

mmol/l phenylmethyl sulfofluoride, 1 µg/ml pepstatin, aprotinin

and leupeptin). After sonication, the cells were incubated on

ice for 15 min and centrifuged at 14,000 rpm for 10 min at

4°C. The supernatants containing cell lysates were collected,

and the protein concentrations were measured using the

method of Bradford and coworkers [40].

Western blotting

The cytoplasmic extracts (15 and 30 µg of protein was loaded

for p38 and JNK western blotting, respectively) were diluted in

Laemmli buffer and boiled at 95°C for 5 min. Proteins were

separated by 8% SDS-PAGE and transferred onto PVDF

membranes by electroblotting. The membranes were blocked

for 2 hours at room temperature in 5% nonfat dry milk in Tris-

buffered saline-Tween (TBS-T) and then washed three times

with TBS-T. The membranes were incubated overnight at 4°C

with phospho-anti-MAPK (1:1000) antibodies in 3% BSA

TBS-T. After washing with TBS-T, blots were incubated with a

horseradish peroxidase conjugated anti-rabbit antibody. The

protein complexes were visualized by chemiluminescence

using the ECL Western blotting detection reagents (Amer-

sham Pharmacia Biotech Inc., Orsay, France). The membranes

were subsequently stripped and reprobed with anti-total

MAPK (1:1000 for total p38, and 1:500 for total JNK)

antibodies.

RNA isolation and RT-PCR

Nonadherent chondrocytes were treated for 60 min with phar-

macological inhibitors and then stimulated with OCP crystals

or IL-1β. After cell collection, total RNA was isolated using TRI-

zol reagent, in accordance with the manufacturer's instruc-

tions. Then, 2 µg of each sample was reverse transcribed at

37°C for 50 min using the M-MLV RT-PCR system. The result-

ing cDNA samples were amplified by PCR.

The PCR primers for bovine iNOS [41] were as follows: sense,

5'-TAG AGG AAC ATC TGG CCA GG-3', corresponding to

positions 682–701; and antisense, 5'-TGG CAG GGT CCC

CTC TGA TG-3', corresponding to positions 1034-053.

These amplified a 372-bp product. The primers for IL-1β [37]

were as follows: sense, 5'-TAC CTG AAC CCA TCA ACG

AAA-3', corresponding to positions 517–533; and antisense,

5'-GAT GAA TGA AAG GAT GCC CTC-3', corresponding to

positions 799–783. These amplified a 275-bp product. The

collagen IIα1 primers [42] were as follows: sense, 5'-GAT

CCG CAA CAT GGA GAC TGG CGA-3'; and antisense,

5'CAA GAA GCA GAC AGG CCC TAT GTC CAC-3'. These

generated a 527-bp product. For the housekeeping gene

GAPDH (glyceraldehyde-3-phosphate dehydrogenase), the

sense primer was 5'-ATC ACC ATC TTC CAG GAG CG-3',
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corresponding to positions 245–264, and the antisense

primer was 5'-CCT GCT TCA CCA CCT TCT TG-3', corre-

sponding to positions 817-798, which amplified a 579-bp

product. The PCR products were analyzed by electrophoresis

on 2% agarose gel containing ethidium bromide.

Statistical analysis

Each experiment was conducted at least three times. Data are

presented as the mean ± standard deviation unless indicated

otherwise. For the statistical analysis, post hoc tests were

done when analysis of variance results were significant. P <

0.05 was considered statistically significant. Statistical analy-

ses were conducted using GraphPad software (San Diego,

CA, USA).

Results
Octacalcium phosphate crystals stimulate NO 

production by both articular cartilage fragments and 

isolated articular chondrocytes, and induce iNOS mRNA 

in isolated articular chondrocytes

To investigate the role of OCP crystals in cartilage destruction,

we isolated bovine articular cartilage fragments and chondro-

cytes. Isolated articular chondrocytes were cultured in poly-

HEMA-coated plates, which is a nonadherent culture condi-

tion previously shown to prevent chondrocyte de-differentia-

tion [38]. OCP crystals induced dose-dependent NO

production (Fig. 1a) by normal isolated articular chondrocytes

incubated with the crystals for 24 hours. Under these condi-

tions, we checked that the nonadherent cells consistently

expressed collagen II mRNA 48 hours after stimulation (Fig.

2a). Significant NO release was achieved with crystal concen-

trations as low as 0.1 mg/ml, which is a level known to occur

in human synovial fluids. Between 1 and 3 mg/ml, a plateau

was reached, with no cytotoxic effects as assessed by trypan

blue exclusion (data not shown). We therefore used 0.5 mg/

ml of OCP crystals in further experiments.

Time-dependent stimulation of NO production was observed,

with significant levels as early as 8 hours after stimulation and

a further increase until the 4-day time point, with no plateau

(Fig. 1b). L-NAME, a nonspecific iNOS inhibitor, reduced NO

production by OCP crystal- and IL-1 stimulated chondrocytes

(Figure 1b). With articular cartilage fragments, statistically sig-

nificant NO production induced by OCP crystals was found

only 4 days after stimulation (Fig. 1c), whereas NO production

was detected 24 hours after IL-1β stimulation (data not

shown). As previously demonstrated [43], IL-1β stimulated

NO production by both isolated chondrocytes and articular

cartilage organ culture, and increased iNOS mRNA expres-

sion (Fig. 1a–c). NO production was associated with time-

dependent induction of iNOS mRNA expression, which was

increased after 4 hours, reached a plateau between 8 and 24

hours, and decreased 48 hours after stimulation (Fig. 2a,b).

Octacalcium phosphate crystal-induced NO production 

was regulated at both transcriptional and translational 

levels

As shown in Fig. 2a, OCP crystals induced iNOS mRNA tran-

scription in articular chondrocytes, followed 4 hours later by

NO production. NO production and iNOS mRNA expression

were inhibited when chondrocytes were pre-incubated for 1

hour with the transcription inhibitor actinomycin D. This effect

was dose-dependent, being significant with an actinomycin D

concentration as low as 20 ng/ml (Fig. 3a,b). With 100 ng/ml

actinomycin D, no toxic effect was detected by trypan blue

exclusion. Levels of iNOS mRNA decreased after 24 hours of

stimulation, whereas NO production continued to increase for

4 days, suggesting post-transcriptional regulation. This was

confirmed when preincubation of chondrocytes with the trans-

lation inhibitor cycloheximide at a dose as low as 20 ng/ml

resulted in a significant decrease in OCP crystal induced NO

release (Fig. 3c). Thus, NO production induced by OCP crys-

tals was regulated at both transcriptional and post-transcrip-

tional levels, as observed with IL-1β (data not shown).

Octacalcium phosphate crystals induced IL-1β 

expression, but octacalcium phosphate crystal induced 

iNOS mRNA and NO production were independent of IL-

1β
Previous experiments have shown that BCP crystals induced

the production of inflammatory cytokines, including IL-1α, IL-6,

TNF-α and IL-8, by peripheral adherent monocytes (Prudhom-

meaux and coworkers, Champy and coworkers, unpublished

data) and TNF-α by macrophages [44]. Here, we demon-

strated that OCP crystals induced IL-1β mRNA expression

(Fig. 4a). When we pretreated chondrocytes with IL-1 recep-

tor antagonist for 1 hour before stimulation with either OCP

crystals or IL-1β, we found that IL-1 receptor antagonist com-

pletely inhibited IL-1β-induced iNOS mRNA expression and

NO production but had no influence on the effects of OCP

crystals (Fig. 4b,c). This suggested that iNOS gene expres-

sion induced by OCP crystals was not mediated by a para-

crine or autocrine mechanism involving the IL-1β receptor.

p38 and JNK MAPKs are activated by octacalcium 

phosphate crystals and are involved in octacalcium 

phosphate crystal induced iNOS expression and NO 

production

Because most studies support a role for MAPK pathways in

the regulation of iNOS expression, we used pharmacological

inhibitors to investigate the potential role for these pathways in

OCP crystal-induced iNOS gene expression and NO produc-

tion. The p38 MAPK inhibitor SB 203580, at a concentration

as low as 1 µmol/l significantly reduced NO production (Fig.

5a) and completely inhibited iNOS mRNA induction by crys-

tals (Fig. 5d). JNK II inhibitor also reduced NO production, at

a concentration as low as 2 µmol/l (Fig. 5b). Conversely the

p42/44 MAPK inhibitor PD 98059 had no effect, even at a

high concentration (30 µmol/l, data not shown). Results were
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similar with IL-1β used as a positive control (Fig. 5c). These

findings support involvement of both the p38 and the JNK

MAPK pathways in OCP crystal-induced NO production. We

then used immunoblotting to show that OCP crystals induced

p38 and JNK phosphorylation and that this effect was inhibited

by chondrocyte pretreatment with p38 or JNK MAPK inhibi-

tors, respectively (Fig. 6a,b).

Because BCP crystals activated c-Jun and c-Fos [45], and the

transcriptional factor activator protein (AP)-1 has been impli-

cated in iNOS regulation, we investigated the role for AP-1 in

OCP crystal-induced NO production. NO production

decreased significantly when chondrocytes were preincu-

bated with curcumin, an AP-1 inhibitor directed toward het-

erodimerization of c-jun-c-fos, at a concentration as low as 1

µmol/l. This inhibition of NO production was dose dependent

(Fig. 7).

Discussion
OCP crystals, the most potent inflammation-inducing BCP

crystals [33,34], are found in joint fluids [35]. In our study,

OCP crystals induced iNOS gene expression by isolated artic-

ular chondrocytes and NO production by both isolated

chondrocytes and cartilage fragments. The expression of

iNOS mRNA increased 4 hours after BCP crystal stimulation,

peaked between 8 and 12 hours, and decreased after 24

Figure 1

OCP crystal-induced NO release by articular cartilage fragments and isolated articular chondrocytesOCP crystal-induced NO release by articular cartilage fragments and isolated articular chondrocytes. Nonadherent articular bovine chondrocytes 
(106 cells/ml) were stimulated with OCP crystals (see Materials and method). Articular cartilage fragments were dissected and cultured as 
described in the Materials and method section. NO accumulation was determined with the Griess reaction. (a) Dose–response NO production by 
chondrocytes was determined 24 hours after stimulation with different doses of OCP crystals or IL-1β. (b) Kinetics of NO release was determined 
after stimulation with OCP crystals (0.5 mg/ml), IL-1β (10 ng/ml) alone or preincubated with L-NAME (2 mmol/l), a nonspecific iNOS inhibitor (n = 3 
different experiments). (c) NO released by articular cartilage disks, and reported to cartilage dry weight, were measured 4 days after OCP crystals or 
IL-1β (10 ng/ml) stimulation (n = 3). *P < 0.001, OCP versus control, L-NAME/OCP). L-NAME, NG-nitro-L-arginine methyl ester; OCP, octacalcium 
phosphate; PBS, phosphate-buffered saline.
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hours, in agreement with findings reported by Terkeltaub and

coworkers [37] and by Adler and colleagues [41] after

stimulation by monosodium urate (MSU) crystals and Salmo-

nella dublin, respectively. NO production was significant in

culture supernatants as early as hour 8 and increased through-

out the 4-day poststimulation period. Using a nonspecific

iNOS inhibitor, L-NAME, we observed that the inhibition of NO

production was less marked after IL-1 stimulation compared

with OCP crystals. This could result from the magnitude of the

effect achieved by each reagent.

Previous studies suggested that BCP crystals may directly

activate articular chondrocytes to produce MMP-13 [16], col-

lagenase [12] and other MMPs capable of degrading carti-

lage, as well as to release prostaglandin [13]. Although

chondrocytes can ingest BCP crystals [13], BCP-induced

MMP production does not require intracellular dissolution of

the crystals [46]. In fibroblasts 4 hours after stimulation by

BCP crystals, BCP crystal endocytosis was not yet complete

and solubilization of the crystals had not yet occurred [47]. In

addition, BCP crystal phagocytosis by chondrocytes has been

observed after 24 hours [13], suggesting that in the present

study OCP crystal-induced iNOS expression did not require

this process.

The direct effect of OCP crystals on cells may involve an inter-

action between OCP crystals and cell surface receptor-like

structures, such as integrins [37]. Proteins bind to BCP crys-

tals, including OCP, and to MSU crystal surfaces [34,48,49]

and can modulate cell function in vivo and in vitro. In addition,

fibronectin fragments induced p38 and JNK MAPK activation

via interactions with integrins [50]. Tan and coworkers [51]

reported regulation of iNOS expression by an integrin-linked

kinase, which was an ankyrin repeat containing a serine/threo-

nine protein kinase that interacted with the cytoplasmic

domain of β1 integrin [51]. Furthermore, Liu and Lioté [37]

found that, within a few minutes, MSU crystals activated sev-

eral molecules linked to the focal adhesion kinase complex,

most notably Pyk-2, which appeared to be central to p38

MAPK activation and promoted iNOS gene expression, NO

production and MMP-3 translation.

NO regulates chondrocyte and cartilage functions and often

acts as an IL-1β second messenger. Although in vitro NO had

either catabolic [52-57] or anabolic [58-61] effects, in vivo

studies clearly demonstrated that inhibition of NO production

by N-iminoethyl-L-lysine reduced the progression of structural

damage in rabbits with experimentally induced OA [30,32].

NO inhibition was associated with reductions in MMP synthe-

sis, IL-1β and prostaglandin E2 production, and chondrocyte

apoptosis [32]. As it has been demonstrated that IL-1β-

induced MMP production is NO dependent [54], the mecha-

nism of BCP crystal induced MMP-13 production by chondro-

cytes remains unknown [16]. One possibility is a direct effect,

similar to the induction of MMP-1 production by fibroblasts

stimulated by BCP crystals [20]. Alternatively, NO mediation

may be involved, as shown for MSU crystal-induced MMP-3 in

chondrocytes [37].

Figure 2

Stimulation of NO production and induction of iNOS mRNA expression by OCP crystalsStimulation of NO production and induction of iNOS mRNA expression by OCP crystals. Nonadherent bovine articular chondrocytes were stimu-
lated with OCP crystals (0.5 mg/ml) or IL-1β (10 ng/ml). (a) iNOS and collagen II transcripts were detected in cell pellets by RT-PCR (see Materials 
and method). (b) Absorbance ratio (iNOS/GAPDH) of the RT-PCR. The RT-PCR was representative of three independent experiments, while NO 
release (triplicate experiments) and the absorbance ratio were expressed as mean ± standard deviation from the same three experiments. *P < 0.05, 
**P < 0.01, OCP versus control. GAPDH, glyceraldehyde-3-phosphate dehydrogenase; iNOS, inducible nitric oxide synthase; OCP, octacalcium 
phosphate.
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Although this is the first report on iNOS production by bovine

articular chondrocytes treated with BCP crystals, iNOS

expression has been consistently described in chondrocytes

treated with various inflammatory cytokines, including inter-

feron-γ, TNF-α and IL-1β [43,62,63]. IL-1β seems to be the

key cytokine in the induction of cartilage catabolism and plays

a pivotal role in the cartilage destruction typical of OA [64]. In

our experiments using IL-1 receptor antagonist, we found that,

although OCP crystals induced IL-1β mRNA, iNOS mRNA

expression induced by OCP crystals were in part independent

from IL-1β. In contrast, iNOS mRNA expression and NO pro-

duction induced by IL-1β were inhibited by IL-1 receptor

antagonist. These results are in agreement with MSU crystal

induced iNOS expression, as observed by Liu and Lioté [37].

As described for MSU crystals, IL-1β and OCP crystal

induced iNOS mRNA expression by chondrocytes required

the p38 and JNK MAPK pathways, whereas Erk1/2 MAPK

was not involved. NO production was partially inhibited by low

p38 inhibitor concentration whereas iNOS mRNA expression

was markedly decreased, reflecting differences between

iNOS protein production and activity and transcriptional regu-

lation. Furthermore, NO production was assessed after 24

hours of stimulation and iNOS mRNA expression at 8 hours. A

preferential role for p38 and JNK MAPK in iNOS activation

was observed by Mendes and coworkers using IL-1β stimula-

tion [65]. However, depending on the stimulus and the cell

type, MAPK may play a positive, negative, or neutral role in reg-

ulating iNOS expression. For instance both the p38 and p42/

44 MAPK pathways have been reported to be involved in

iNOS induction by IL-1β-stimulated cardiomyocytes [66].

Conversely, in pulmonary vascular smooth muscle cells, p38

MAKP inhibited IL-1β-mediated iNOS expression [67]. Also,

BCP crystal induced MMP-1 activation in skin fibroblasts was

activated by p42/44 MAPK [20]. Two hypotheses may explain

the variations in the role of p38 MAPK on iNOS expression.

One is that p38 MAPK exists as several isoforms, each

expressed by specific cell types; under this hypothesis, the

p38 MAPK inhibitors used in previous work and in the present

study may not be sufficiently selective to inhibit one specific

Figure 3

OCP crystal-induced NO production is dependent on both transcription and translationOCP crystal-induced NO production is dependent on both transcription and translation. Bovine articular chondrocytes cultured on poly-HEMA-
coated plates were stimulated with OCP crystals or IL-1β for 24 hours with or without pretreatment with (a,b) AcD, an inhibitor of transcription, or 
(c) CycH, an inhibitor of translation. AcD, actynomycin D; CycH, cycloheximide; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; NO, nitric 
oxide; OCP, octacalcium phosphate; poly-HEMA, poly-(2-hydroxyethyl methacrylate).
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p38 MAPK isoform. In support of this possibility, Guan and

coworkers [68] demonstrated that p38α MAPK isoform

activation was required for IL-1β-induced stimulation of iNOS

production by rat glomerular mesangial cells; thus, overexpres-

sion of the kinase inactive mutant form of p38α MAPK inhib-

ited IL-1β-induced iNOS expression. The second hypothesis

is that regulation of iNOS promoter may be complex and spe-

cific for each cell type [69].

Structural analysis of the 5' flanking region of the iNOS gene

has identified multiple binding sites for the transcriptional fac-

tor AP-1 [70], a heterodimer that is composed of the protein

products of Fos and Jun. BCP crystals induce c-jun, c-fos and

AP-1 in human fibroblasts [20,46]. In this study JNK MAPK

was also activated by OCP crystals, and OCP crystal induced

NO production was inhibited by curcumin, a c-fos/c-jun het-

erodimerization inhibitor. These results suggest a role for AP-

1 in OCP crystal induced iNOS gene expression, as demon-

strated by Marks-Konczalik and coworkers [70] in A549 cells

(human alveolar type II lung carcinoma cell line) stimulated by

a mixture of cytokines containing interferon-γ, TNF-α and IL-1β.

Inhibition of iNOS by actinomycin and cycloheximide may

reflect, at least in part, inhibition of AP-1 complex synthesis,

normally induced by BCP crystals.

Conclusion
In summary, this study showed that OCP crystals, a member

of the family of BCP crystals, caused inflammation by directly

activating chondrocytes to induce IL-1β and iNOS gene

expression and NO production. OCP crystal induced iNOS

activation was IL-1β independent, and involved the p38 and

JNK MAPK pathways, probably under AP-1 control. These

results demonstrated that chondrocytes may play a direct and

active role in cartilage destruction by specific microcrystals.
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Figure 4

OCP crystal-induced iNOS mRNA expression and NO release is not IL-1β dependentOCP crystal-induced iNOS mRNA expression and NO release is not IL-1β dependent. Nonadherent articular chondrocytes were stimulated with 
OCP crystals or IL-1β for 24 hours with or without pretreatment with IL-1ra for 1 hour. (a,b) IL-1β and iNOS transcripts were assessed by RT-PCR 
and (c) NO release was measured in the supernatants. The RT-PCR was representative of three experiments. GAPDH, glyceraldehyde-3-phosphate 
dehydrogenase; IL-1ra, IL-1 receptor antagonist; iNOS, inducible nitric oxide synthase; NO, nitric oxide; OCP, octacalcium phosphate.
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Figure 5

p38 and JNK MAPK pathways regulate OCP crystal induced NO production and iNOS mRNA expressionp38 and JNK MAPK pathways regulate OCP crystal induced NO production and iNOS mRNA expression. Nonadherent bovine articular chondro-
cytes were stimulated with OCP crystals or IL-1β for 24 hours with or without pretreatment (1 hour) with (a,c) SB 203580 (a p38 MAPK inhibitor), 
(b,c) JNK II inhibitor or (d) PD 58059 (an Erk1/2 MAPK inhibitor). iNOS transcripts (panel d) were assessed 8 hours after stimulation by OCP crys-
tals or IL-1β by RT-PCR. The RT-PCR was representative of three experiments. GAPDH, glyceraldehyde-3-phosphate dehydrogenase; iNOS, induc-
ible nitric oxide synthase; JNK, c-Jun amino-terminal kinase; NO, nitric oxide; OCP, octacalcium phosphate.

Figure 6

OCP crystal induced p38 and JNK MAPK activationOCP crystal induced p38 and JNK MAPK activation. Nonadherent bovine articular chondrocytes were stimulated with OCP crystals for 20 min with 
or without pretreatment (1 hour) with SB 203580 or JNK II inhibitor. Fifteen (p38 MAPK) or 30 µg (JNK MAPK) protein of cell lysates were subjected 
to SDS-PAGE/Western blot analysis. The blots were probed with phosphospecific (a) p38 and (b) JNK MAPK antibodies. To ensure equal loading, 
the blot was stripped and reprobed with total p38 MAPK or JNK antibodies. JNK, c-Jun amino-terminal kinase; OCP, octacalcium phosphate.
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