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Abstract

Background: Inflammation is a hallmark of acute lung injury and chronic airway diseases. In chronic airway diseases, it is

associated with profound tissue remodeling. Peroxisome proliferator-activated receptor-α (PPARα) is a ligand-activated

transcription factor, that belongs to the nuclear receptor family. Agonists for PPARα have been recently shown to reduce

lipopolysaccharide (LPS)- and cytokine-induced secretion of matrix metalloproteinase-9 (MMP-9) in human monocytes and rat

mesangial cells, suggesting that PPARα may play a beneficial role in inflammation and tissue remodeling.

Methods: We have investigated the role of PPARα in a mouse model of LPS-induced airway inflammation characterized by

neutrophil and macrophage infiltration, by production of the chemoattractants, tumor necrosis factor-α (TNF-α), keratinocyte

derived-chemokine (KC), macrophage inflammatory protein-2 (MIP-2) and monocyte chemoattractant protein-1 (MCP-1), and

by increased MMP-2 and MMP-9 activity in bronchoalveolar lavage fluid (BALF). The role of PPARα in this model was studied

using both PPARα-deficient mice and mice treated with the PPARα activator, fenofibrate.

Results: Upon intranasal exposure to LPS, PPARα-/- mice exhibited greater neutrophil and macrophage number in BALF, as well

as increased levels of TNF-α, KC, MIP-2 and MCP-1, when compared to PPARα+/+ mice. PPARα-/- mice also displayed enhanced

MMP-9 activity. Conversely, fenofibrate (0.15 to 15 mg/day) dose-dependently reduced the increase in neutrophil and

macrophage number induced by LPS in wild-type mice. In animals treated with 15 mg/day fenofibrate, this effect was associated

with a reduction in TNF-α, KC, MIP-2 and MCP-1 levels, as well as in MMP-2 and MMP-9 activity. PPARα-/- mice treated with

15 mg/day fenofibrate failed to exhibit decreased airway inflammatory cell infiltrate, demonstrating that PPARα mediates the

anti-inflammatory effect of fenofibrate.

Conclusion: Using both genetic and pharmacological approaches, our data clearly show that PPARα downregulates cell

infiltration, chemoattractant production and enhanced MMP activity triggered by LPS in mouse lung. This suggests that PPARα
activation may have a beneficial effect in acute or chronic inflammatory airway disorders involving neutrophils and macrophages.
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Background
Inflammation is a feature of both acute lung injury and
chronic airway diseases. In chronic airway diseases such as
chronic obstructive pulmonary disease (COPD), it is asso-
ciated with profound tissue remodeling that contributes
to impaired lung function [1]. Lipopolysaccharides (LPS),
which are biological active components of the outer mem-
brane of gram-negative bacteria, are important inducers of
lung inflammation. Inflammatory response triggered by
LPS is characterized by neutrophil and macrophage
recruitment and by the release of chemoattractants includ-
ing tumor necrosis factor-α (TNF-α), and the CXC and CC
chemokines, interleukin-8 (IL-8) and monocyte chemoat-
tractant protein-1 (MCP-1), respectively [2-5]. These
inflammatory events reproduce some of the features of
the inflammatory response observed during acute lung
injury or COPD [1,6].

In mice, airway inflammation induced by LPS is associ-
ated with an increase of the matrix metalloproteinases
(MMP), MMP-2 and MMP-9 [7,8]. MMP are a family of
zinc- and calcium-dependent endopeptidases that play a
major role in tissue remodeling [9,10]. Indeed, MMP
degrade the majority of the extracellular matrix (ECM)
proteins, including collagens, gelatins and proteoglycans,
an activity which may contribute to lung injury by pro-
moting infiltration accross basement membrane and acti-
vation of inflammatory cells [9,11]. Among MMP, MMP-
2 (gelatinase A) preferentially produced by fibroblasts and
other connective tissue cells, and MMP-9 (gelatinase B)
mainly found in inflammatory cells, such as neutrophils
and macrophages are of particular interest, since they
cleave the major constituent of basement membrane, type
IV collagen [9,10].

With the exception of neutrophils, normal tissues do not
store MMP and constitutive expression is minimal. How-
ever, during inflammation and tissue remodeling, MMP
expression is upregulated [9]. Levels or activity of several
MMP have been found to be raised in animal models of
acute lung injury (for review: [12]). Upregulation of MMP
was also observed in chronic airway diseases associated
with tissue remodeling, such as asthma and COPD (for
review: [1,13]). Indeed, increased levels of MMP-9 have
been reported in bronchoalveolar lavage fluid (BALF),
blood or sputum from patients with asthma or COPD
[14-17].

Peroxisome proliferator-activated receptor-α (PPARα) is a
ligand-activated transcription factor, that belongs to the
nuclear receptor family. PPARα regulates gene expression
by binding as a heterodimeric complex with the retinoid
X receptor to specific DNA sequences known as peroxi-
some proliferator response elements. PPARα was first
identified for its role in the regulation of lipid and carbo-

hydrate metabolism (for reviews: [18,19]). However, sub-
sequent data have demonstrated that it exhibits also a
potent anti-inflammatory activity. Indeed, mice deficient
in PPARα (PPARα-/-) were reported to display an exacer-
bated reaction to various inflammatory stimuli, including
LPS in the skin and the vessel [20-22]. Conversely, ani-
mals treated with PPARα activators such as fibrates exhib-
ited a decreased response. Anti-inflammatory activity of
fibrates appeared as unrelated to their lipid-lowering
activity, since treatment with fenofibrate was shown to
reduce inflammatory response associated with cerebral
injury in absence of any improvement in plasma lipid lev-
els in the mouse [23]. More recently, PPARα agonists were
shown to reduce LPS- and cytokine-induced MMP-9 secre-
tion in human monocytes and rat mesangial cells, sug-
gesting that PPARα may also play a beneficial role in
tissue remodeling [24,25].

We have here investigated the role of PPARα in a mouse
model of LPS-induced airway inflammation characterized
by cell infiltration, production of chemoattractants and
increased MMP activity. This study was undertaken using
both PPARα-deficient mice and mice treated with the
PPARα activator, fenofibrate.

Materials and methods
Animals

Male wild-type (PPARα+/+) and homozygous knockout
(PPARα-/-) mice (SV/129/C57BL/6) were expanded from
breeding pairs [26] and used at the age of 9 weeks. Nine-
week-old male C57BL/6 mice were purchased from
Charles River Laboratories (Saint-Germain-sur-l'Arbresle,
France). Animals were maintained under controlled envi-
ronmental conditions with a 12 h/12 h light/dark cycle
according to the EU guide for use of laboratory animals.
Food (UAR-Alimentation, Villemoisson, France) and tap
water were available ad libitum. Animal experimentation
was conducted with the approval of the government body
that regulates animal research in France.

LPS administration

LPS (Escherichia coli, serotype 055:B5, Sigma Chemical,
Saint Quentin Fallavier, France) prepared in saline was
administered by i.n. instillation for 4 consecutive days at
the dose of 40 µg/kg. Control animals received saline
instead of LPS. Instillations (12.5 µl per nostril) were car-
ried out under anaesthesia (50 mg/kg ketamine and 3.33
mg/kg xylazine given i.p.).

Treatment with fenofibrate

Fenofibrate (Sigma Chemical) suspended in 1% car-
boxymethylcellulose (low viscosity, Sigma) in water was
administered per os once daily for 10 days at increasing
doses (0.15 to 15 mg/day), as previously described [27].
Duration of treatment was selected from a previous study
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showing protection against myocardial injury in mice
[28]. Control animals received equivalent volumes (100
µl) of 1% carboxymethylcellulose (CMC) in similar
conditions.

Collection of bronchoalveolar lavage fluids

Eighteen to twenty-four hours after the last LPS adminis-
tration, mice were anaesthetized by i.p. injection of keta-
mine (150 mg/kg) and xylazine (10 mg/kg). A plastic
cannula was inserted into the trachea and airways were
lavaged by 10 instillations of 0.5 ml ice-cold saline sup-
plemented with 2.6 mM EDTA (saline-EDTA). BALF
recovered from the two first instillations were centrifuged
(4100 rpm for 5 min at 4°C), and the resulting superna-
tant was stored at -20°C until MMP and cytokine
measurements.

Determination of total and differential cell counts

BALF were centrifuged (1200 rpm for 5 min at 4°C) to
pellet cells and erythrocytes were lysed by hypotonic
shock. Cells were then resuspended in 500 µl ice-cold
saline-EDTA and total cell counts were determined using
a hemocytometer (Neubauer's chamber). Differential cell
counts were assessed on cytologic preparations obtained
by cytocentrifugation (Cytospin 3, Shandon Ltd, Run-
corn, Chershire, UK) of 200 µl of diluted BALF (250 000
cells/ml in ice-cold saline-EDTA). Slides were stained with
Hemacolor (Merck, Dormstadt, Germany) and determi-
nations were performed by counting at least 400 cells for
each preparation. Cells were identified as macrophages
and neutrophils, and expressed as absolute numbers from
total cell counts.

Determination of cytokine and chemokine levels

Tumor necrosis factor-α (TNF-α), keratinocyte derived-
chemokine (KC), macrophage inflammatory protein-2
(MIP-2) and monocyte chemoattractant protein-1 (MCP-
1) were quantified in BALF using capture ELISA kits
according to instructions provided by the manufacturers
(PharMingen for TNF-α and R&D Systems Europe (Lille,
France) for KC, MIP-2 and MCP-1).

Gelatin zymography for determination of gelatinase 

activity

BALF samples were separated under non-reducing condi-
tions by electrophoresis on a 7% acrylamide-separating
gel containing 1 mg/ml gelatin and sodium dodecyl sul-
fate, as previously described [7]. After electrophoresis, gels
were washed twice with 2.5% Triton X-100, rinsed with
water and incubated overnight at 37°C in 50 mM Tris pH
8.0 containing 5 mM CaCl2 and 1 nM ZnCl2. Gels were
stained with Coomassie Brilliant blue and destained in a
25% ethanol and 10% acetic acid solution. Gelatinase
(MMP-2 and MMP-9) activities that appeared as clear
bands against a blue background were quantified by

measuring intensity of the bands by densitometry using
the Densylab software (Bioprobe Systems, Les Ulis,
France). Results were expressed as percentages of the
intensity of a given sample loaded as internal standard
onto each gel.

Histology

Lungs were perfused in situ, collected and immersed in 4%
paraformaldehyde for 24 h at 4°C. Fixed lungs were
rinsed in phosphate-buffered saline, dehydrated and
embedded in paraffin using standard procedures. Five-
micrometer tissue sections were stained with hematoxy-
lin-eosin and observed under light microscopy.

Statistical analysis

Data are presented as means ± SEM. Statistical differences
were analyzed from raw data by analysis of variance fol-
lowed by unpaired two-tailed Student's t-test with a Bon-
ferroni correction.

Results
Increased cell infiltration, chemoattractant production 

and MMP activity in PPARα-/- mice upon exposure to LPS

Saline-exposed PPARα-/- mice exhibited no differences in
total cell and macrophage count in BALF when compared
to saline-exposed PPARα+/+ animals (Figure 1). Upon
exposure to LPS, both PPARα+/+ and PPARα-/- mice dis-
played a significant increase in total cell, neutrophil and
macrophage number, when compared to animals exposed
to saline (Figure 1). However, these increases were 2.9- (p
< 0.0001), 5.0- (p < 0.0001) and 1.9-fold (p < 0.0001)
greater, respectively in PPARα-/- mice than in PPARα+/+

mice (Figure 1).

Cell infiltration induced by LPS was associated with a sig-
nificant increase in BALF levels of the chemoattractants,
TNF-α, KC and MCP-1 in both PPARα+/+ and PPARα-/-

mice (Figure 2). These levels were however 1.5- (p =
0.0003), 2.3- (p = 0.0008) and 3.5-fold (p = 0.0012)
greater, respectively in PPARα-/- animals when compared
to PPARα+/+ mice (Figure 2). PPARα-/- mice exposed to LPS
also displayed a significant rise in MIP-2 in BALF (2.0-
fold, p = 0.0065), whereas LPS-treated PPARα+/+ animals
exhibited no changes in this chemokine.

Saline-exposed PPARα-/- mice exhibited similar low MMP-
2 (76 kDa) and MMP-9 (105 kDa) activity in BALF when
compared to saline-exposed PPARα+/+ animals (Figure 3).
Upon exposure to LPS, PPARα+/+ and PPARα-/- mice dis-
played a significant increase in both MMP-2 and MMP-9
activity, when compared to animals exposed to saline
(Figure 3). MMP-2 levels were similar in LPS-treated
PPARα-/- and PPARα+/+ mice (61 ± 8 vs 58 ± 4). In contrast,
MMP-9 levels were 1.8-fold (p < 0.0001) greater in
PPARα-/- animals than in PPARα+/+ mice.
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Reduced cell infiltration, chemoattractant production and 

MMP activity in wild-type mice upon PPARα activation by 

fenofibrate

Exposure to LPS resulted in marked increases in total cell,
neutrophil and macrophage number in BALF from
C57BL/6 mice (Figure 4). These increases were dose-
dependently reduced by fenofibrate (0.15 to 15 mg/day).
Reduction in total cell, neutrophil and macrophage
number reached 80% (p < 0.0001), 91% (p < 0.0001) and
64% (p < 0.0001), respectively in BALF from mice treated
with 15 mg/kg of the PPARα activator when compared to
mice treated with the vehicle, CMC (Figure 4). Fenofibrate
(15 mg/day) inhibited also total cell (p = 0.0055), neu-
trophil (p < 0.0001) and macrophage (p = 0.0064) infil-
trate induced by LPS in PPARα+/+ mice (Table 1). In
contrast, LPS-exposed PPARα-/- mice treated with 15 mg/
day fenofibrate failed to exhibit changes in inflammatory
cell infiltrate, demonstrating that PPARα mediates the
anti-inflammatory activity of fenofibrate (Table 1).

Histological examination of lung tissue confirmed the
anti-inflammatory effect of fenofibrate. Indeed, whereas a

massive inflammatory cell infiltration was observed in
perivascular and alveolar tissue of C57BL/6 mice exposed
to LPS and treated with CMC when compared to mice
exposed to saline (Figure 5A et 5B), a marked reduction in
cell infiltration was observed on lung sections from mice
exposed to LPS and treated with fenofibrate (Figure 5C).

C57BL/6 mice exposed to LPS and treated with CMC dis-
played also increases in TNF-α, KC, MIP-2 and MCP-1 in
BALF when compared to saline-exposed mice (Figure 6A).
Treatment with fenofibrate (15 mg/day) inhibited these
increases by 59% (p < 0.0001), 50% (p = 0.0015), 30% (p
= 0.0058) and 69% (p < 0.0001), respectively (Figure 6A).

Number of total cells, neutrophils and macrophages in BALF from PPARα+/+(+/+) and PPARα-/- (-/-) mice exposed to LPS or salineFigure 1
Number of total cells, neutrophils and macrophages 
in BALF from PPARα+/+(+/+) and PPARα-/- (-/-) mice 
exposed to LPS or saline. Data are mean ± SEM of n = 
10–13 animals. Statistically significant differences at α = 0.05: 
(*) when compared to PPARα+/+ mice treated with saline; (#) 
when compared to PPARα-/- mice treated with saline; and ($) 
when compared to PPARα+/+ mice treated with LPS.
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Chemoattractant levels in BALF from PPARα+/+ (+/+) and PPARα-/- (-/-) mice exposed to LPS or salineFigure 2
Chemoattractant levels in BALF from PPARα+/+ (+/+) 
and PPARα-/- (-/-) mice exposed to LPS or saline. Data 
are mean ± SEM of n = 9–12 animals. Statistically significant 
differences at α = 0.05: (*) when compared to PPARα+/+ 

mice treated with saline; (#) when compared to PPARα-/- 

mice treated with saline; and ($) when compared to PPARα+/

+ mice treated with LPS.
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MMP-2 (76 kDa) and MMP-9 (105 kDa) activity in BALF from PPARα+/+ (+/+) and PPARα-/- (-/-) mice exposed to LPS or salineFigure 3
MMP-2 (76 kDa) and MMP-9 (105 kDa) activity in BALF from PPARα+/+ (+/+) and PPARα-/- (-/-) mice exposed to 
LPS or saline. Upper panel shows gelatin zymogram from two representative animals in each group. Lower panel shows data 
of all animals in each group (n = 10–13) expressed as mean ± SEM. Statistically significant differences at α = 0.05: (*) when com-
pared to PPARα+/+ mice treated with saline; (#) when compared to PPARα-/- mice treated with saline; and ($) when compared 
to PPARα+/+ mice treated with LPS.
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Treatment with fenofibrate (15 mg/day) also dramatically
reduced LPS-induced increase in MMP-2 and MMP-9
activity (Figure 6B). Indeed, whereas MMP-2 and MMP-9
activity was increased by 1.8- (p < 0.0001) and 3.6-fold (p
< 0.0001), respectively in BALF from LPS-exposed mice
treated with CMC when compared to saline-exposed

mice, animals exposed to LPS and treated with fenofibrate
displayed MMP levels similar to those measured in saline-
exposed animals.

Discussion
In this study, we have addressed the role of PPARα in a
mouse model of LPS-induced airway inflammation.
Using both genetic and pharmacological approaches, our
data clearly showed that PPARα downregulates cell infil-
tration, chemoattractant production and enhanced MMP
activity triggered by LPS in mouse lung.

As expected, wild-type mice exposed to LPS exhibited a
massive recruitment of inflammatory cells in the airways,
composed of neutrophils and macrophages. This cell infil-
tration was associated with an increase in BALF levels of
the pro-inflammatory and chemoattractant cytokine,
TNF-α and by a rise in the levels of the CXC chemokines,
MIP-2 and KC and of the CC chemokine, MCP-1. Expo-
sure to LPS also induced a marked increase in MMP-2 and
MMP-9 activity in BALF, when compared to saline expo-
sure. This model reproduced several features of the
inflammatory response observed during acute lung injury
or COPD [1,6,13]. Using this model, we found that
PPARα-/- mice exposed to LPS displayed enhanced neu-
trophil and macrophage number in BALF when compared
to PPARα+/+ animals, whereas wild-type mice treated with
the PPARα activator, fenofibrate exhibited reduced cell
infiltrate. Furthermore, we demonstrated fenofibrate
selectivity by showing absence of effect of fenofibrate in
PPARα-/- animals. Taken together, these results suggest
that PPARα activation may have a beneficial effect in air-
way inflammatory diseases involving neutrophil and
monocyte recruitment. In agreement with our results, Bir-
rell et al. recently proposed that agonists of another PPAR
receptor, PPARγ may have a therapeutic potential in respi-
ratory diseases involving neutrophilia [29]. Our study
adds to these previous findings by showing that PPARα
agonists may also be effective in blocking recruitment of
monocytes, which play a pivotal role in the pathophysiol-
ogy of COPD, as well as of pulmonary fibrosis. By con-

Table 1: Cell infiltration in LPS-exposed PPARα+/+ and PPARα-/- mice treated with fenofibrate.

Group Number of cells (×106)

Total Neutrophils Macrophages

(+/+)-LPS-CMC 1.93 ± 0.11 0.95 ± 0.11 0.98 ± 0.13

(+/+)-LPS-FF 0.73 ± 0.08 (*) 0.23 ± 0.07 (*) 0.50 ± 0.05 (*)

(-/-)-LPS-CMC 3.46 ± 0.38 (*) 1.85 ± 0.28 (*) 1.60 ± 0.25 (*)

(-/-)-LPS-FF 3.13 ± 0.54 (n.s.) 1.73 ± 0.30 (n.s.) 1.39 ± 0.28 (n.s.)

Data are mean ± SEM of n = 6–8 animals. (*): statistically significant differences at α = 0.05 when compared to PPARα+/+ mice treated with CMC. 
(n.s.): non statistically different when compared to PPARα-/- mice treated with CMC.

Dose-dependent reduction of cell infiltration in wild-type mice exposed to LPS upon PPARα activation by fenofibrateFigure 4
Dose-dependent reduction of cell infiltration in wild-
type mice exposed to LPS upon PPARα activation by 
fenofibrate. Number of total cells, neutrophils and macro-
phages in BALF from C57BL/6 mice exposed to LPS and 
treated with increasing doses of fenofibrate (0.15 to 15 mg/
day) or its vehicle (1% CMC), when compared to mice 
exposed to saline and treated with CMC. Data are mean ± 
SEM of n = 6 animals. Statistically significant differences at α 
= 0.05: (*) when compared to mice exposed to saline and 
treated with CMC; (#) when compared to mice exposed to 
LPS and treated with CMC.
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trast, Trifilieff et al. found that PPARα ligands failed to
inhibit neutrophil recruitment induced by LPS in BALF
from mice [30]. Differences in the mode of exposure to
LPS could explain this discrepancy. Indeed, whereas these
authors exposed female mice intranasally to a single high
dose of LPS (0.3 mg/kg) for a short period of time (3 h),
the present study was carried out in male animals using
four repeated instillations of a 7.5-fold lower dose of LPS
(40 µg/kg). Indeed, these modes of exposure may trigger
different inflammatory responses. Likewise, nature (GW
9578 vs fenofibrate) and route of delivery (local vs oral)
of PPARα agonists may be another source of discrepancy.
Therefore, by both genetic and pharmacological
approaches, our data clearly demonstrate that PPARα
downregulates neutrophil and monocyte infiltration in
mouse lung.

We also found that PPARα-/- mice exposed to LPS dis-
played increased levels of TNF-α in BALF when compared
to PPARα+/+ animals, whereas wild-type mice treated with
fenofibrate exhibited reduced TNF-α levels. As a pro-
inflammatory cytokine, TNF-α that is released by macro-
phages or airway epithelial cells upon activation plays an
important role in neutrophilic inflammation induced by
LPS [4]. Indeed, TNF-α triggers the release of CXC chem-
okines, such as MIP-2 and KC that are involved in LPS-
induced intrapulmonary recruitment of neutrophils [2,3].
As well, MCP-1, which plays a central role in monocyte
recruitment to inflamed tissues, is produced by pulmo-
nary macrophages and airway epithelial cells in response
to TNF-α or LPS [31,32]. In the present study, release of
MIP-2, KC and MCP-1 triggered by LPS instillation was
greater in BALF from PPARα-/- mice when compared to
PPARα+/+ animals. Conversely, wild-type mice treated
with fenofibrate displayed decreased levels of these chem-
okines when compared to vehicle-treated animals. Taken
together, our results suggest that downregulation of TNF-
α and of the CXC and C-C chemokines, MIP-2, KC and
MCP-1 contributes to PPARα-induced inhibition of neu-
trophil and macrophage airway recruitment in our model.

PPARα agonists were recently reported to reduce LPS- and
IL-1β-induced secretion of MMP-9 in human monocytes
and rat mesangial cells, respectively [24,25]. However, the
effect of PPARα on MMP production in vivo is so far
unknown. In the present study, we demonstrate that
PPARα downregulates increase in MMP-2 and MMP-9
activity triggered by LPS in mouse lung. Indeed, whereas
PPARα-/- mice displayed a greater increase in MMP activity
in BALF upon exposure to LPS when compared to
PPARα+/+ animals, wild-type mice exposed to LPS exhib-
ited decreased levels of MMP when treated by fenofibrate.
Sources of MMP in the lung are numerous, particularly
under inflammatory conditions. Among them,
neutrophils and macrophages are considered as the major

Histological analysis of lung tissue from wild-type miceFigure 5
Histological analysis of lung tissue from wild-type 
mice. Lung sections showing a massive inflammatory cell 
infiltrate in perivascular and alveolar tissue of C57BL/6 mice 
exposed to LPS and treated with CMC (B), when compared 
to mice exposed to saline (A). Reduced cell infiltrate in lung 
tissue from mice exposed to LPS and treated with fenofibrate 
(C).

A

B
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sources of MMP-9 [11]. Therefore, downregulation of
MMP-9 production by PPARα may result from decreased
cell infiltration. In neutrophils, MMP-9 is stored in spe-

cific granules from which it is readily released, in
particular upon stimulation by LPS or chemoattractant
factors, like IL-8 [33]. Downregulation of MMP-9 produc-
tion by PPARα could alternatively result from decreased
neutrophil activation. MMP-9 is believed to play a major
role in lung remodeling. Indeed, in addition to digestion
of extracellular matrix proteins, MMP-9 increases the
activity of other proteases, as well as of chemoattractants
and growth factors (for review: [34]). By providing evi-
dence that PPARα downregulates MMP activity in vivo,
our study reinforces the idea that the nuclear receptor
PPARα may play a beneficial role in tissue remodeling.

Several studies have reported that PPARα inhibits the NF-
κB pathway, which plays a critical role in LPS signaling as
well as in the expression of the chemokines, MIP-2, KC
and MCP-1 and of MMP-9 [35]. This property could
account for the beneficial effect of PPARα observed in the
present study. However, several other mechanisms could
be involved. This includes production of anti-inflamma-
tory mediators, such as IL-10. Indeed, fenofibrate was
reported to suppress autoimmune myocarditis in rats by
stimulating expression of this cytokine [36]. As well, inhi-
bition of cell recruitment could be implicated. Thus, acti-
vation of PPARα was reported to inhibit chemotaxis of
inflammatory cells, including macrophages [37,38].
Finally, resolution of inflammation through stimulation
of inflammatory cell apoptosis may also be involved,
since activation of PPARα was shown to induce apoptosis
of macrophages [39].

Conclusion
In conclusion, using both genetic and pharmacological
approaches, our study provides evidence that PPARα
downregulates neutrophil and monocyte infiltration
induced by LPS in mouse lung. Our data also demon-
strated that this beneficial effect of PPARα involves down-
regulation of the production of neutrophil and monocyte
chemoattractants, including the CXC and C-C chemok-
ines, MIP-2, KC and MCP-1, and of MMP that play a
major role in tissue remodeling. We postulate that PPARα
agonists, and in particular fenofibrate may have a thera-
peutic potential in airway inflammatory disorders involv-
ing neutrophil and monocyte, such as acute lung injury
and COPD.

List of abbreviations
BALF: bronchoalveolar lavage fluid

CMC: carboxylmethylcellulose

COPD: chronic obstructive pulmonary disease

EDTA: ethylenediaminetetraacetic acid

Reduced chemoattractant production and MMP activity in wild-type mice upon PPARα activation by fenofibrateFigure 6
Reduced chemoattractant production and MMP 
activity in wild-type mice upon PPARα activation by 
fenofibrate. Chemoattractant levels (A) and MMP-2 and 
MMP-9 activity (B) in BALF from C57BL/6 mice exposed to 
LPS and treated with fenofibrate (15 mg/day, black bars) or 
its vehicle (1% CMC, grey bars), when compared to mice 
exposed to saline and treated with CMC (open bars). Data 
are mean ± SEM of n = 7–8 animals. Statistically significant 
differences at α = 0.05: (*) when compared to mice exposed 
to saline and treated with CMC; (#) when compared to mice 
exposed to LPS and treated with CMC.
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KC: keratinocyte derived-chemokine
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