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Abstract

Dicistronic MLV-based retroviral vectors, in which two IRESes independently initiate the

translation of two proteins from a single RNA, have been shown to direct co-expression of

proteins in several cell culture systems. Here we report that these dicistronic retroviral vectors

can drive co-expression of two gene products in brain cells in vivo. Injection of retroviral vector

producer cells leads to the transduction of proliferating precursors in the external granular layer

of the cerebellum and throughout the ventricular regions. Differentiated neurons co-expressing

both transgenes were observed in the cerebellum and in lower numbers in distant brain regions

such as the cortex. Thus, we describe an eukaryotic dicistronic vector system that is capable of

transducing mouse neural precursors in vivo and maintaining the expression of genes after cell

differentiation.

Background
The brain constitutes one of the most important organs
for gene therapy. Considerable interest resides in the
development of vector-based therapies for many of the
brain diseases, either to allow the expression of exogenous
genes to compensate for a metabolic deficit, to express a
growth factor and thus inhibit neural degeneration or to
target suicide genes to cancer cells. An alternative
approach has been the development of cellular vectors [1-
3]. Uncommitted neural precursor cells can be isolated,
transduced and grafted into host brains. They adapt to
novel environments by stable integration and the expres-
sion of location-appropriate phenotypes in host. This
opens new avenues for the use of neural stem cells as cel-
lular vectors for gene therapy in the central nervous sys-

tem (CNS) [2-6]. Both endogenous and transplanted stem
cells spontaneously migrate to the site of lesions where
they integrate to repopulate the damaged tissue [7-9].

Retroviral vectors based on the γ-retrovirus murine leuke-
mia virus (MLV) are of particular interest for the transduc-
tion of neural precursor cells either ex vivo to generate
cellular vectors, or in vivo to directly target endogenous
neural precursors. They specifically target proliferating
cells [10], integrate into the host genome and are con-
served in cellular progeny [11]. This has made MLV-vec-
tors a tool of choice to trace lineages and assess the
function of specific genes in rodent CNS in vivo [12-14]. In
previous studies we established that dicistronic MLV-
based retroviral vectors efficiently transduced cells derived
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from a transformed human neural stem cell line [15], or
cells from a primary culture of neural precursors [16].
Here we report that dicistronic MLV-based vectors can
deliver and maintain expression of marker genes during
neural differentiation in the CNS of new born mice.

Vector producer cells were injected in the region of the
developing cerebellum, where the generation of neurons
from proliferating precursors continues after birth [17-
21]. At early periods post-injection, transduced cells were
observed in the external granular layer (EGL) of precur-
sors and migrating towards the internal granular layer
(IGL). At later time differentiated neurons were observed
scattered about the IGL or in patches. Analysis of other
brain regions demonstrated a large number of transduced
cells in the ependymal walls throughout the ventricular
system and in the subventricular zone. Thus, our results
show that dicistronic MLV-based vectors co-expressing
two marker transgenes, human placental alkaline phos-
phatase (PLAP) and neomycin phosphotransferase (Neo)
[22,23], transduce proliferating neural precursors in vivo

and can penetrate throughout the ventricular system
when producer cells are grafted to host animals. Moreo-
ver, transduced neural precursors maintain expression of
both transgenes after differentiation into neurons demon-
strating that the activity of both internal ribosome entry
segments (IRES) used in their design is not altered in vivo

by neural differentiation.

Results
Location of MLV-vector producer cells

The cerebellum of newborn mice constitutes an accessible
model system and was used as target to evaluate the capac-
ity of dicistronic MLV retroviral vectors (Fig. 1) to trans-
duce neural precursors in vivo. At early ages the cartilage of
the skull has not undergone calcification, is very thin and
can be easily pierced with a needle; thus surgery is not
required prior to injection in the brain parenchyma. At
this early stage however, stereotactic guidance of the injec-
tion needle is not practical because of the difficulty of
maintaining a newborn mouse head in a steady coordi-
nated position. Therefore, upon injection of recombinant
virus producing cell lines it was important to determine
the location of the cells at different times post-injection.
The principal site where producer cells were found 5 days
post injection (dpi) corresponded to the hindbrain
beneath the cerebellum (Fig. 2) with smaller clusters of
cells following the needle trace up to the surface of the
brain. The micrographs shown (Fig. 2C to 2G) were pro-
duced from adjacent coronal sections of caudal cerebel-
lum and the underlying hindbrain, in the regions
indicated (Figure 2A and 2B). Injected cells were easily
distinguished from the surrounding tissue on the basis of
transgene expression shown by immunofluorescence for
Neo (Fig. 2C) or PLAP (Fig. 2F). PLAP activity was also

revealed by histochemistry (Fig. 2D and 2E). Injected pro-
ducer cells were also identified by staining DNA (Fig. 2G)
because their nuclei appeared to fluoresce more brightly
than brain cell nuclei and were elongated as opposed to
the round nuclei typical of neural cells. Injected producer
cells were not restricted to the injection site since histo-
chemically labelled producer and control cells were also
found at different sites including the 4th ventricle and its
lateral recesses and in the perimedian sulcus (Fig. 3A,B
and 3G; PLAP staining) and trapped in the subarachnoid
space, between the meninges on the surface of the brain
parenchyma, particularly in the region of the basal artery
(Fig. 3C,D and 3F). Similar distributions were obtained
with pREV-HW3 vector producing cell lines (Fig. 3A,B,C
and 3D), and control helper cells transfected with pREV-
HW1 (Fig. 3E,F,G and 3H). The latter vector lacks the viral
packaging sequence and is thus not incorporated into
recombinant vector particles [22]. The absence of stained
cells in the region of the lateral ventricles indicates the
failure of graft cells to migrate such great distances
upstream of the injection site (Fig. 3H). Taken together
these observations are consistent with a significant infil-
tration of injected cells into the cerebrospinal fluid (CSF)
and their being carried via the CSF throughout the ven-
tricular system and into the subarachnoid space. At later
times (10 dpi and later) producer cells were no longer
observed. We do not know if this is because of the subop-
timal conditions for their survival in the brain or whether
they were actively eliminated. The latter hypothesis
appears less likely because at this early stage in postnatal
life immunotolerance of self is still being acquired. Fur-
thermore the brain is an immunoprivileged organ well
isolated from the immune system. Lastly, we did not iden-
tify any evident signs of inflammation such as activated
macrophages or infiltrating lymphocytes in the brain
parenchyma.

Transgene expression in differentiated cerebellar cells in 

vivo

We next sought to determine the location of cells trans-
duced by the dicistronic MLV vector in vivo. At 4 dpi histo-
chemical staining for the PLAP, reporter gene under the
control of the MLV IRES, revealed transduced cells mainly
in the EGL (Fig. 4A and 4B). Labeled cells in the EGL were
often clustered along the edge of the parenchyma of the
cerebellum and were morphologically fusiform (Fig. 4A
and 4B), however patches of staining were also observed
in which it was difficult to distinguish discrete cells (Fig.
4C). At 15 dpi PLAP histochemical staining revealed
transduced cells in patches and scattered about the paren-
chyma of the cerebellum (Fig. 4D,E and 4F). The majority
of cells were found in the IGL (Fig. 4E and 4F) but cells
were also found in and astride bands of cerebellar white
matter (Fig. 4D). The high density of the labeling made it
difficult to attribute a phenotype to individual cells on the
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basis of morphological characteristics. However, on the
basis of their locations in fibre tracts and in the IGL, PLAP
expressing cells probably included both neurons and glia.
In the regions of the IGL where labeled cells were more
parsimoniously scattered it was possible to distinguish
cells with a clearly neuronal morphology (Fig. 4F).

Immunohistochemistry for PLAP revealed intensely
labeled cells in the IGL (Fig. 5A). An antiserum directed
against the HU antigen which is specifically expressed
only by post-mitotic neurons in the brain [24,25] allowed
the unambiguous identification of some of the PLAP
expressing cells as neurons (Fig. 5B, arrows). Cells express-
ing PLAP were also identified on the peripheral extremity
of the section (Fig. 5A,B and 5C, magenta arrowhead),
however, HU staining in this region is at background lev-
els. These stained cells, at this stage (5 dpi), may corre-
spond to undifferentiated precursors, producer cells or

transduced meningeal cells. At 15 dpi double labeling for
PLAP and Neo revealed patches of cells in the internal
granular layer that expressed both transgenes (Fig. 5D,E
and 5F). Similar data where obtained when vector
pEMCV-CBT4 was used (data not shown) indicating that
the MLV-based double IRES vectors can direct expression
of two distinct gene products in cerebellar neurons.

Taken together these results show that MLV-IRES vectors
are able to transduce precursor cells in the CNS in vivo and
that the IRESes of different viruses such as MLV, EMCV
and REV-A remain functional in differentiated neurons in
the animal.

Transduction of cells in different brain regions

Although the primary target for transduction was the cer-
ebellum the spread of the dicistronic MLV vector to neural
cells in other brain regions was also evaluated. Numerous

Schematic representation of dicistronic MLV vectorsFigure 1
Schematic representation of dicistronic MLV vectors. Vectors used in this study have been previously described [22, 
23]. MLV E+ corresponds to the enhanced packaging region of MLV and the internal ribosome entry signal (IRES). pREV-HW3 
and pEMCV-CBT4 contain two IRESes [22, 23]. For both vectors the first is that of MLV and drives expression of human pla-
cental alkaline phosphatase (PLAP). In the pREV-HW3 the second IRES is that of REV-A [22], while in pEMCV-CBT4 it is that 
of EMCV [66]. In both vectors the second IRES drives the expression of neomycin phosphotransferase (Neo). The pREV-HW1 
lacks the packaging sequence and the IRES of MLV and thus it cannot generate recombinant virus [22]. The pREV-HW1 missing 
the MLV Psi/IRES sequences was used as an internal negative control.

pEMCV-CBT4

pREV-HW1

pREV-HW3

LTRLTR LTRLTRMLV E+, IRESMLV E+, IRESMLV E+, IRESMLV E+, IRES REV-A IRESREV-A IRESREV-A IRESREV-A IRES NeoNeoPLAPPLAP

LTRLTR LTRLTRMLV E+, IRESMLV E+, IRESMLV E+, IRESMLV E+, IRES EMCV IRESEMCV IRES NeoNeoPLAPPLAP

LTRLTR LTRLTRREV-A IRESREV-A IRESREV-A IRESREV-A IRES NeoNeoPLAPPLAP
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Location of injected MLV-vector producer cellsFigure 2
Location of injected MLV-vector producer cells. Injected helper cells were found mainly in the hind brain beneath the 
caudal cerebellum. The red line in A indicates the position in the rostro-caudal axis, and the red rectangle in B shows the loca-
tion of the photomicro graph presented in C. The sections in D, F and G correspond to the region bordered by the white rec-
tangle shown in C. E shows the region bordered by the white rectangle in D at higher magnificationInjected cells were easily 
distinguished from the surrounding tissue on the basis of transgene expression shown by immunofluorescence for Neo (C) or 
PLAP (F). Brightly stained cells express transgene. Alternatively PLAP activity could be revealed by histochemistry in which case 
the dark cells express PLAP (D and E). It was also possible to identify injected producer cells by staining DNA as shown in field 
G which corresponds to the same field as D stained with bis-benzimide. The nuclei of injected cells appeared to fluoresce more 
brightly than brain cell nuclei and were elongated in contrast to the round nuclei typical of neural cells. Macroscopically, 
injected cells appeared as disorganized patches in the surrounding brain parenchyma. PMS, perimedian sulcus. Scale bars indi-
cate 200 µm (C and D), 20 µm (E, F and G)

PMS Cerebellum

C D

E

F G

A

Cortex

Cerebellum Cerebellum

Hind Brain
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Dissemination of injected MLV vector producer cells from the injection siteFigure 3
Dissemination of injected MLV vector producer cells from the injection site. Panels A, B, C and D are micrographs 
from brain sections of an animal injected with pREV-HW3 vector producer cells, while panels E, F, G and H are micrographs 
from brain sections of an animal injected with helper cells transfected with pREV-HW1. Panel B shows the region of A bor-
dered by a black rectangle at greater magnification. PLAP histochemical staining shows cells in different sites including the 4th 

ventricle and its lateral recesses and in the perimedian sulcus (A, B and G, respectively) and trapped in the subarachnoid space, 
between the meninges on the surface of the brain parenchyma, particularly in the region of the basal artery (C, D and F). Simi-
lar distributions were obtained with vector producing cells (A, B, C and D) and helper cells transfected with pREV-HW1 (E, F, 
G and H). PMS, perimedian sulcus. Size bars indicate 200 µm (A and G), 100 µm (B), 125 µm (C and D), 450 µm (E), 360 µm 
(F) and 250 µm (H).
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transduced ependymal cells were observed in the ventricu-
lar walls and in the 3rd and 4th ventricles (Fig. 5G,H and
5I). A significant sub-population of transduced cells was
also observed in the lateral ventricles (Fig. 6A–G) a site
very distant from the site of injection of the producer cells.
Whereas many transduced cells appeared to be in the
ependymal wall, some of them appeared to be localized in
the adjacent brain parenchyma (Fig. 6A arrow heads).
These cells did not express HU antigen (Fig. 6B). Double
labeling for PLAP (Fig. 6E) and GFAP (Fig. 6F) showed
that the PLAP transgene was predominantly co-localized
with GFAP in cells and processes (Fig. 6E and 6F). These

data suggest that the PLAP expressing cells most probably
correspond to ependymocytes, tanycytes and perhaps
neural precursor cells interposed among the ependymo-
cytes or in the subependymal zone [26-28]. In either case
it is clear that the vector must infiltrate and permeate CSF
efficiently, because no evidence of helper cells was seen in
the brain parenchyma so far from the injection site in any
of the control animals (e.g. Fig. 3H).

Several neural precursor cell populations may be suscepti-
ble to transduction by the dicistronic MLV vectors in the
ventricular zone. Ependymal cells, which have been

In vivo transduction of cells using pREV-HW3 vector in the cerebellumFigure 4
In vivo transduction of cells using pREV-HW3 vector in the cerebellum. 4 days post injection, histochemical staining 
of PLAP in brain sections shows labeled cells in the region occupied by neural precursors in the external granular layer of the 
cerebellum, observed as discrete cells (A and B) or patches of staining (C). Panel B shows the region bordered by the black 
rectangle in A at higher magnification. 15 dpi histochemistry revealed transduced cells in patches and scattered about the 
parenchyma of the cerebellum (D, E and F). The majority of cells were found in the internal granular layer (E and F) but cells 
were also found in and astride bands of cerebellar white matter which is indicated by a black arrow (D). Discrete cells often 
exhibit a clearly neuronal morphology (F), the thin arrow indicates a cell with the morphology of a granular neuron, the arrow 
head indicates a cell with the morphological characteristics of a cerebellar golgi neuron. PCL, purkinje cell layer. Scale bars are 
200 µm (A), 100 µm (B, C, D), and 40 µm (E, F)
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In vivo transduction of neural cellsFigure 5
In vivo transduction of neural cells. Immunohistochemical labeling for PLAP (A) and the neuron-specific HU antigen (B) 
was used to identify pREV-HW3 transduced neurons in the cerebellum (5 dpi). Examples of cells expressing both antigens are 
indicated by white arrows. Cells expressing PLAP were identified on the peripheral extremity of the section (magenta arrow-
head in A, B and C). Transduced cells were also found in the brain parenchyma (example indicated by white arrowhead). In all 
the regions examined transduced cells co-expressed both proteins as illustrated by immunodetection of both PLAP (D) and 
Neo (E) in cells in the IGL of the cerebellum (14 dpi). Co-expression of both antigens, PLAP (G) and Neo (H), also occurred in 
cells in the ventricular region such as in the ependymal walls of the 3rd ventricle (G, H and I). DNA is stained with bis-benzim-
ide (C, F and I). PCL, purkinje cell layer; IGL, internal granular layer. Scale bars correspond to 150 µm (C and F), 75 µm (I)
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In vivo transduction of cells in other brain regionsFigure 6
In vivo transduction of cells in other brain regions. Immunohistochemical staining reveals pREV-HW3 transduced cells in 
and adjacent to the ependymal walls throughout the ventricular system including in the lateral ventricles (A, B, C and D). PLAP 
expressing cells are identified in the ependymal wall, and in the adjacent brain parenchyma (arrow heads in A). Transduced cells 
are not reactive to anti-HU antibody (B). Double labeling for PLAP (E) and GFAP (F) showed that the PLAP transgene predom-
inantly co-localizes with GFAP in cells (arrow in E and F) and processes (arrow heads). Analysis of the overlying cortex showed 
cells co-expressing PLAP (H) and HU (I) in the most superficial layers of cortex (arrows in H and I). Many of the transduced 
cells in this region did not express HU (white arrow heads in H, I, J and K). Note the absence of HU staining in small piece of 
attached meninges (magenta arrow head in H, I, J and K). DNA staining with bis-benzimide is shown C, G and J and phase con-
trast of the section in A, B and C, and the section in H, I and J, are shown in D and K, respectively. Scale bars correspond to 75 
µm (C, G) and 100 µm (J).
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reported to be neural precursors [29], are still proliferating
quite quickly in early postnatal brain [30]. Radial glia,
which may be precursors of both neurons and glia [31-
35], contact the ventricular surface and proliferate in the
ventricular region until postnatal day 7 [36]. Lastly, the
slowly proliferating GFAP-labeled subependymal neural
stem cells, which survive and continue to proliferate and
generate neurons in the adult brain, have been proposed
to require contact with the ventricular surface to become
neurogenic [27]. Having identified this sub-population of
potential precursor cells we sought cells with mature phe-
notypes that may represent their progeny. In the most
superficial layers of the cortex, which will be formed from
the latest neurogenerative mitoses of cortical precursor
cells, we were surprised to find rare transduced neurons,
co-expressing PLAP and HU (Fig. 6H–I). Other non-neu-
ronal cells labeled with the transgenes were also observed
in forebrain (Fig. 6H,I,J and 6K).

These results showed that rather large numbers of trans-
duced non-neuronal cells were found in and adjacent to
the ependymal walls throughout the ventricular system
including in the lateral ventricles (Fig. 6) and that the viral
IRESes were active in these cells in vivo.

Discussion
MLV-based double-IRES vectors pREV-HW3 and pEMCV-
CBT4 were found to direct co-expression of two gene
products in a variety of cell types [15,16,22,23]. Overall
transgene expression driven from the MLV-based double-
IRES vectors is the consequence of two distinct processes,
transcription and translation initiation, both of which are
tightly regulated by the host cell. Indeed, important limi-
tations of MLV-vectors are cell-type-specific promoter
silencing [13,37,38], and modulation of IRES activity.
IRES activity can be regulated by diverse physiological
processes such as cell cycle [39-42], cellular stress [43-46],
cell transformation [47], cell death [48-51] and cell differ-
entiation [52-56]. Previous studies suggested that the
activity of the MLV IRES present in both vectors, could be
modulated by oligodendrocyte differentiation [16]. The
possibility of in vivo IRES regulation due to cell
differentiation prompted us to extend our previous ex vivo

studies [15,16], and evaluate the feasibility of using dou-
ble-IRES MLV vectors in the CNS.

Results show that upon injection of producer cells in the
cerebellum of newborn mice, the generated MLV-vectors
transduce host cells throughout the postnatal brain ven-
tricular system. Transduced neural precursors and their
progeny could be revealed by histochemistry for PLAP or
immunohistochemistry and large patches of transduced
neurons could be identified expressing both transgenes 15
dpi. In double labeling studies, most cells that were PLAP
positive also stained for Neo. Considering that MLV-vec-

tor producer cells appeared to survive less than 10 days in
the developing brain these observations demonstrated
transduction of proliferating precursor cells and the main-
tenance of IRES activity in neurons with each of the com-
binations of IRESes tested, namely MLV and REV-A
(pHW3) and MLV and EMCV (pCBT4). Therefore, and
consistent with previous observations [15,16], down-reg-
ulation of transgene expression was not observed in neu-
rons generated from precursors transduced in vivo.

Transduced cells could be identified in the ependymal
walls throughout the ventricular system. The 3rd and lat-
eral ventricles lie upstream of the injection site with
respect to the flow of cerebrospinal fluid. Thus, the MLV
vector is capable of diffusing via the cerebrospinal fluid
and targets proliferating cells in this region of the brain.
Diverse cell populations identified as sources of neuronal
and glial precursors are potential targets for MLV-recom-
binant vector in early postnatal brain [27-29,34,35]. For
example, the proliferation of ependymal cells, which form
the interface between the CSF and the brain parenchyma,
progressively slows down during postnatal development
to a very low basal level at postnatal day 12 which then
remains stable in the absence of injury [30,57]. Mitotic
radial glia are also in contact with the ventricular surface
in the lateral ventricles during early postnatal develop-
ment [36]. Subventricular astrocytes also contact the ven-
tricular surface in adult brain and proliferate slowly [27].

In the ventricular regions the majority of transduced cells
express GFAP, which is is weakly expressed by ependymal
cells and tanycytes and more strongly expressed by astro-
cytes and the GFAP labeled "type B" cells that constitute
multipotent neural precursors [28,58]. Radial glia are also
GFAP positive [59]. 15 dpi, transduced cells were
observed in the brain parenchyma close to the ependymal
wall. In the more superficial layers of the cortex, where the
most immature post mitotic neurons reside, a few trans-
duced neurons, identified by their expression of the HU
antigen, as well as non-neuronal cells could be identified.

The current approaches for gene therapy of monogenetic
diseases in mature organisms are confronted by several
problems including: (1) adult tissues may be poorly
infected by conventional vector systems dependent upon
cell proliferation for optimal infection; (2) immune
responses, whether pre-existing or developing after vector
delivery, may rapidly eliminate transgenic protein
expression and prevent future effective intervention. Early
gene transfer, in the neonatal or even fetal period, may
overcome some or all of these obstacles [60]. Therefore,
the experimental approach described herein, might be
useful in the development of new approaches to gene
therapy in young organisms.
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Conclusion
In summary, we describe an eukaryotic dicistronic vector
system that is capable of transducing mouse neural pre-
cursors in vivo andmaintaining the expression of genes
after cell differentiation. Human placental alkaline phos-
phatase (PLAP) and neomycin phosphotransferase (Neo)
used in this study as reporter genes can be replaced by
other genes of interest to make these dicistronic vectors a
novel tool to trace lineages and assess the function of spe-
cific genes in rodent CNS in vivo. Vectors might also be
ideally suited to targeting suicide genes to proliferating
cells, such as tumor cells, that spread and infiltrate via the
CSF [61,62].

Materials and methods
Vectors, helper cells, titration

Plasmid vectors pEMCV-CBT4, pREV-HW1 and pREV-
HW3, shown schematically in Fig 1, have been previously
described [22,23]. NIH-3T3 cells, and the NIH-3T3 based
retroviral packaging cell line GP+E-86 [63], were cultured
in Dulbecco's modified Eagle's medium (DMEM, Gibco
BRL) with 10% newborn calf serum at 37°C in presence
of 5% CO2. MLV vectors were produced by transfection of
GP+E-86 cells with pREV-HW3 or pEMCV-CBT4 con-
structs as previously described [22]. Vectors, produced by
GP+E-86, were titrated on NIH-3T3 [15,16,22]. The nega-
tive control pREV-HW1 was produced using the same pro-
cedure as above.

Grafts

Postnatal day 1–2 mice (OF1 strain) were injected with 1–
5 × 104 producer cells in a 2 µl volume in the region of the
developing cerebellum as follows. Producer cells harbor-
ing the recombinant vector, or control cells (non-trans-
fected helper cells, transduced 3T3 cells or cells transfected
with the pRev-HW 1 vector described by López-Lastra et
al., (1997) which cannot be packaged, see Fig. 1), were
resuspended by trypsinization, washed once in medium
and twice in PBS, counted and resuspended in PBS. Cell
suspension was pumped from a Hamilton syringe to fill a
fine plastic catheter connected to a second Hamilton
syringe needle. The second needle was manually pierced
to a depth of 1.5 – 2 mm through the cranial cartilage into
the region of the developing cerebellum, behind the cere-
bral hemispheres which were visible through the skull.
Then, 2 µl of cell suspension was slowly pumped into the
brain using the Hamilton syringe over a 10 second period.
The needle was held in place for another 10 seconds and
then carefully removed. The young were then replaced
with their mothers and maintained with free access to
food and water until the time of sacrifice. Animals were
killed by anoxia in CO2, decapitated and their brains were
carefully removed and fixed by immersion in 4% parafor-
maldehyde in PBS for 12 – 15 h. Brains were then cryopro-
tected by immersion in 30% sucrose and frozen by

immersion in isopentane over dry ice. Brains were then
cut into serial sections of 16 µµm thickness using a Leitz
cryomicrotome and recovered on gelatin-coated glass
microscope slides. All experiments involving animals
were performed in accordance with the French regulations
and were approved by the animal experimentation com-
mittee of the Ecole Normale Supérieure, Lyon.

Histochemical staining

For placental alkaline phosphatase (PLAP) histochemical
staining, cells were fixed in phosphate-buffered saline
(PBS) containing 4% paraformaldehyde. After two washes
in PBS, they were incubated at 65°C for 30 min in PBS.
Tissue sections were incubated for 1 hour at 65°C. Cells or
tissue sections were washed twice with AP buffer (100 mM
Tris-HCl pH 9.5, 100 mM NaCl, and 5 mM MgCl2) and
incubated for 5 hr in staining solution (0.1 mg/ml 5-
bromo-4-chloro-3-indolyl phosphate (BCIP), 1 mg/ml
nitroblue tetrazolium salt (NBT), and 1 mM levamisole)
at 22°C. Brain regions of histochemically and
immunostained cells were identified by extrapolation
from a rat brain histological atlas [64].

Immunohistochemistry

Tissue sections were rinsed in PBS then incubated for 30
min in 20 mM ammonium acetate. Sections were washed
twice in PBS then incubated for 30 min in a blocking solu-
tion of PBS containing 5% BSA, 1% normal goat serum
and 0.2% Tween 20 prior to staining with antibodies. This
same solution served to dilute all the antibodies. Double-
labelling was performed by simultaneous staining with
antibodies produced in different species which were then
revealed using fluorochrome-conjugated goat antibodies
with appropriate species specificity. Thus, PLAP was
revealed using a murine monoclonal antibody (diluted 1/
200) purchased from DAKO (Glostrup, Denmark). Neo
was revealed using an affinity purified rabbit polyclonal
antibody (diluted 1/100) generated by immunizing rab-
bits with peptides VENGRFSGFIDCGRL and MIEQDGL-
HAGSPAAC conjugated by their carboxy terminus to
keyhole limpet haemocyanin. GFAP which labels
astrocytes [65], a population of neural stem cells [27,58]
developing ependymocytes [58] and radial glia [59] was
detected by a polyclonal rabbit anti-cow GFAP antiserum
(diluted 1/200), purchased from DAKO. Neurons were
detected using an anti-HU antiserum generously donated
by Dr. J. Honnorat and Dr. M-F. Belin (diluted 1/1000).
The HU antigen comprises a group of nucleic acid binding
proteins located in the nucleus and cytoplasm of post-
mitotic neurons [24]. All antibodies have been tested in
cell culture and on various control tissues and give appro-
priate patterns of specific labeling. The neural cell type-
specific markers did not label helper/producer cells in

vitro. Primary incubations were for 2 h at room tempera-
ture or at 4°C overnight. After washing sections 5 × 10
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min in PBS, bound antibodies were revealed with FITC-
conjugated goat anti-human immunoglobulin antibodies
or Cy3-conjugated goat anti-rabbit IgG antibodies and
either Cy3- or FITC-conjugated goat anti-mouse IgG anti-
bodies. Anti-immunoglobulin antibodies were all at a
final dilution of 1/400 in blocking buffer containing bis-
benzimide (1 µg/ml) to stain DNA. Controls included no
primary antibodies and non-transduced brain. Slides were
washed 3 times in PBS, mounted with moviol and ana-
lyzed with a Zeiss Axioplan fluorescence microscope.
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