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3 Département de maladies infectieuses, Assistance Publique Hôpitaux de Paris, Hôpital
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Abstract:

A simulation study is performed to investigate the robustness of the maximum likelihood
estimator of fixed effects from a linear mixed model when the error distribution is misspeci-
fied. Inference for the fixed effects under the assumption of independent normally distributed
errors with constant variance is shown to be robust when the errors are either non-gaussian or
heteroscedastic, except when the error variance depends on a covariate included in the model
with interaction with time. Inference is impaired when the errors are correlated. In the latter
case, the model including a random slope in addition to the random intercept is more robust
than the random intercept model. The use of Cholesky residuals and conditional residuals to
evaluate the fit of a linear mixed model is also discussed.
Keywords:mixed model, robustness, random-effect, misspecification, maximum likelihood es-
timator
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1 Introduction

The linear mixed model (Laird and Ware, 1982) is widely used for the analysis of longitudinal
continuous data because it takes correlation between repeated measures into account and the
maximum likelihood estimators are easily obtained using standard softwares. In longitudinal
studies, the growth curve model including two random effects (intercept and slope) normally
distributed and an independent gaussian error is probably the most routinely used to study
change over time of a quantitative outcome. In most of these studies, the focus is on the
fixed effects estimates which measure change over time and association of covariates with it;
the random effects are only included to obtain reliable inference on the fixed effects by taking
intra-subject correlation into account. Despite its wide use, consequences of misspecifying
assumptions of the linear mixed model are not well known.

Apart from the specification of the expectation of the outcome, the key assumptions for the
standard linear mixed model concern the specification of the covariance structure and of the
error distribution :

(i) normality of the random effects distribution
(ii) independency of the response given the random effects i.e. independency of the errors
(iii) normality of the error
(iv) homoscedasticity of the error
Several studies have shown that maximum likelihood inference on fixed effects is robust

to non-gaussian random effects distribution (Butler and Louis 1992; Verbeke and Lesaffre,
1997; Zhang and Davidian 2001). Some results also suggest robustness to misspecification
of the covariance structure. First, Liang and Zeger (1986) have demonstrated convergence
of fixed effects estimates obtained by Generalized Estimating Equations (GEE) whatever the
working covariance matrix. Given that, for the linear model, estimating equations obtained
by derivation of the maximum likelihood are identical (except for the covariance estimator)
to GEE with appropriate covariance structure, this result demonstrates convergence of MLE
for fixed effects in the linear mixed model when the covariance structure is not correct. On
the other hand, Liang et Zeger (1986) demonstrated that variance estimates of fixed effects
may be biased when the covariance structure is not correct and they recommend the use of
the robust sandwich estimate (Royall, 1986). However this robust estimate may be instable for
small sample sizes.

For the balanced and complete case, Lange and Laird (1989) have demonstrated that, in
general, the variance of MLE of fixed effects depends strongly on the assumed covariance
structure but the linear growth curve model with two random effects lead to unbiased variance
estimates of fixed effects even if the true covariance structure implies more random effects. In a
simulation study using the same linear growth curve model, Taylor, Cumberland and Sy (1994)
have also found that the coverage rate of confidence intervals for fixed effects was not impaired
when the true covariance was underlain by a quadratic random effects model, an integrated
Ornstein-Uhlenbeck process or a Brownian motion. Thus the above results suggest that the
linear growth curve model with random intercept and slope leads to robust inference for the
fixed effects when the covariance structure is misspecified.

The two last assumptions, normality and homoscedasticity of the error, have been less
studied. As maximum likelihood estimates of fixed effects are equivalent to weighted least
square estimates with a weighting depending on the estimated covariance matrix, one can
expect robustness of the LMM. However, in practice, it is frequent to analyse a transformation
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of the outcome of interest, such as logarithm (Tsiatis, Degruttola and Wulfsohn, 1995), square
root (McNeil and Gore, 1996; Jacqmin-Gadda et al, 1997) or fourth root (Taylor and Law,
1998), to move closer to normality or constant variance assumptions. Major drawbacks of
these transformations are that results may depend on the transformation used and they are
more difficult to understand particularly for non statisticians. Consequently, if the robustness
of LMM may be assessed, it would generally be better to analyse data in their natural scale.

The aim of this paper is thus to study by simulation, sensitivity of inference for the fixed
effects from a LMM when the error distribution is misspecified that is when the error is cor-
related, non gaussian or heteroscedastic. Results for the random intercept model and for the
model with random intercept and slope are compared. The next section presents the linear
mixed model and model diagnostic procedures. Analysis of data from the ALBI clinical trials
(Molina et al, 1999) is described in section 3 to illustrate the problem and the simulation study
is presented in section 4.

2 Linear mixed Model

2.1 Model

Assuming data come from a longitudinal study, we denote Yij the outcome for subject i, i =
1, ..., N , measured at occasion j, j = 1, ..., ni. The general linear mixed model (Laird and Ware,
1982) has the following form :

Yij = X t
ijβ + Zt

ijαi + eij, (1)

where Xij is a p-vector of covariates including time, Zij is a q-sub-vector from Xij, β is the
vector of fixed effects and αi the vector of random effects assumed to be normally distributed
with mean 0 and covariance matrix G. In the more general model, the measurement error,
which is assumed to be gaussian, may be correlated with a covariance matrix denoted by Σi.
Random effects αi and errors eij are always assumed to be independent. Model (1) may be
equivalently written using the marginal formulation for the ni vector Yi of reponses for subject
i :

Yi ∼ N(Xiβ, Vi = ZiGZt
i + Σi), (2)

with Xi (and Zi) the design matrix ni × p with row X t
ij (and ni × q with row Z t

ij respectively).
We focus on the case where the error is assumed independently distributed : Σi = σ2

eIni
.

More specifically, the growth curve model with random intercept and slope may be written
:

Yij = β0 + β1tij + α0i + α1itij + eij, (3)

where tij is the time of measurement for subject i at occasion j and α0i ∼ N(0, σ2

0
), α1i ∼

N(0, σ2

1
) and the error eij are independently distributed with eij ∼ N(0, σ2

e). The uniform
correlation model which includes a single random effect (the intercept) is defined by deleting
α1itij from (3).

2.2 Estimation

We denote by θ the vector including all the parameters to be estimated, that is the fixed
parameters β and the vector of covariance parameters denoted φ: φT = (V ec(G), σ2

e). Under
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the gaussian assumption (2), the vector θ is estimated by maximisation of the following log-
likelihood :

l(θ) = −
1

2

N
∑

i=1

{

nilog(2π) + log|Vi| + (Yi − Xiβ)TV −1

i (Yi − Xiβ)
}

. (4)

Solving the score equations ∂l(θ)/∂θ = 0, the maximum likelihood estimates for the fixed effects
may be obtained by :

β̂(φ̂) = (XT V (φ̂)−1X)−1XT V (φ̂)−1Y, (5)

which are identical to the weighted least square estimates with V (φ̂)−1 as weighting matrix.
Thus unbiaseness of β̂ requires only that E(Y ) = XT β (Liang and Zeger, 1986). On the other
hand, MLE of variance parameters φ have no closed form solution and must be estimated
iteratively by maximizing l(φ, β̂) obtained by replacing β by β̂ given by (5) in (4). Thus, unlike
convergence of β̂, convergence of φ̂ relies on correct specification of the covariance structure
and on gaussian assumptions.

The asymptotic covariance matrix of the MLE is estimated by the inverse of the observed
Hessian matrix at the optimum −∂l2(θ)/∂θ∂θt. Given that E(∂l2(θ)/∂β∂φ) = 0, MLE of β
and φ are asymptotically independent, and var(β̂) may be estimated by :

V ar(β̂) = −(∂l2(θ)/∂β∂βT )−1 = (XT V (φ̂)−1X)−1, (6)

which can also be directly derived from (5).
Strictly, convergence of the above estimates of Var(β̂) relies on correct specification of the

model (2). When the covariance matrix or the random effects distribution may be misspecified,
it is recommended to use sandwich-type robust variance estimator (Liang and Zeger, 1986;
Verbeke and Lesaffre, 1997). However Verbeke and Lesaffre (1997) have shown in a simula-
tion study that the difference between the model-based standard error of the fixed effects and
the robust one is negligible even if the random effects distribution is misspecified and thus
that model-based inference for the fixed effects remains valid. In the following, we investi-
gate robustness of model-based inference for the fixed effects when the error distribution is
misspecified.

2.3 Goodness of fit analysis

As residuals of LMM are correlated, they can not be directly used to check model assumptions.
However, uncorrelated residuals may be obtained by using Cholesky decomposition of V −1

i .
Let us denote Li the triangular matrix obtained by Cholesky decomposition of V −1

i so that
V −1

i = LiL
t
i, the Cholesky residuals are given by :

Ri = Lt
i(Yi − Xiβ̂).

If the model is correct and neglecting variability of β̂, Ri is approximately N(0, Ini
). In our

experience, based on a simulation study with moderate sample size (N=50 ni=5, results not
shown), the correction of the variance of the residuals to take variance of β̂ into account was
unecessary. Graphical evaluation of departure from the standard normal distribution using
QQ-plot of Rij is often sufficient. Normality may also be tested using, for instance, the Shapiro-
Francia test (Royston, 1993). However, the goodness-of-fit tests are more powerful when the

5

H
al author m

anuscript    inserm
-00084214, version 1



sample size is large that is when the estimators are robust. Thus, it may be more useful to
quantify departure from normality using a measure relatively independent from the sample
size such as the V’ statistic proposed by Royston (1993). As the Cholesky residuals are linear
combinations of several observation-specific residuals Yij−Xijβ̂, they cannot be plotted against
Xijβ or any element from Xij (such as tij) to further explore potential misspecifications.

Park and Lee (2004) have proposed to summarize residuals for each subject using (Yi −
Xiβ̂)Vi(φ̂)−1(Yi − Xiβ̂) which, when model assumptions are correct, is χ2 distributed with ni

degrees of freedom. These residuals are useful to detect influencial subjects or misspecification
associated with a subject-specific covariate but they are little sensitive to departure from the
model depending on time and, in our experience, less sensitive to departure from gaussian
assumption than Cholesky residuals.

To explore constant variance assumption for the error, the conditional residuals Rci may be
computed :

Rci = Yi − Xiβ̂ − Ziα̂i.

Using the empirical Bayes estimates of the random effects, we found that :

Rci = Yi − Xiβ̂ − ZiGZT
i V −1

i (Yi − Xiβ̂) (7)

= σ2

eV
−1

i (Yi − Xiβ̂), (8)

and thus, neglecting as above var(β̂), the distribution of Rci when the model is correct is:

Rci ∼ N(0, σ4

eV
−1

i ). (9)

This result shows that the covariance matrix of the conditional residuals is not diagonal even
if the residual error is assumed to be independent (ei = Yi − Xiβ − Ziαi ∼ N(0, σ2

eI)). This
suggests also that var(Rcij) may depend on tij when Vi depends on ti such as in the model
including a random slope. For instance, in the growth curve model (3), the elements of Vi are
cov(Yij, Yij′) = σ2

0
+ σ2

1
tijtij′ + σ2

eI{j=j′}. However, in many applications when σ̂2

1
t2ij remains

small compared to σ2

0
and σ2

e , one can roughly consider that var(Rcij) is time independent. In
such a case, plotting the conditional residuals Rcij against E(Yij|α̂i) (or against Xij) allows to
explore heteroscedasticity of the error.

3 Analysis of the ALBI data set

3.1 Analysis of crude data

The randomized clinical trial ALBI-ANRS 070 compared three anti-retroviral treatment regi-
mens in HIV-1-infected adults naive of anti-retroviral therapy : stavudine (d4T) plus didano-
sine (ddI) for 24 weeks, zidovudine (AZT) plus lamivudine (3TC) for 24 weeks and a switching
group with the d4T+ddI regimen for 12 weeks followed by the AZT+3TC regimen for 12 weeks
(Molina et al, 1999). In this analysis, we compared the d4T+ddi group (50 patients) with
the AZT+3TC group (50 patients). Measures of CD4+ count were collected at baseline and
then approximately every 4 weeks til week 24. Because of missing data, the mean number of
measurements by subject was 6.

To estimate change over time of CD4+, we fitted first the growth curve model defined by (5)
with the addition of a treatment effect (Xi = 1 for the D4T+DDi group and 0 for AZT+3TC)
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both on the baseline level and on the slope :

Yij = β0 + β1tij + β2Xi + β3Xi × tij + α0i + α1itij + eij, (10)

where Yij was the CD4+ measurement in their natural scale divided by 100, αt
i = (α0i, α1i) ∼

N(0, G) with G diagonal with elements σ2

0
and σ2

1
and eij ∼ N(0, σ2

e). The time unit was 100
days so that the time variable range from 0 to 2. Results are presented in the first column of
table 1.

Table 1 : Parameter estimates and standard-error of the linear mixed model (10) using the
ALBI data set.

Parameter Model for CD4/100 Model for CD41/4

estimate SE estimate SE
β0 4.75 0.194 4.62 0.045
β1 0.27 0.085 0.07 0.021
β2 -0.46 0.275 -0.10 0.063
β3 0.27 0.122 0.07 0.029
σ2

0
1.50 0.151 0.08 0.017

σ2

1
0.02 0.084 0.002 0.008

σ2

e 0.77 0.038 0.04 0.004

3.2 Goodness of fit analysis

To check model assumptions, the QQ-plot of Cholesky residuals was drawn on figure 1a. It
exhibits deviations from the normality assumption. Departure from the normal distribution
was confirmed by the Shapiro-Francia test (p<0.001) and the high value of the Royston’s V’
statistic for normality (V’=16.7). All these results suggested model assumptions were not
adequate for these data.

In this sample, the variance of the random slope σ2

1
was small compared to the variance of the

random intercept σ2

0
and of the error σ2

e and the time variable was always less than 2. Thus,
we could consider the variance of the estimated conditional residuals Rcij as approximately
constant under correct specification of the model. However, the plot of the conditional residuals
Rcij against the estimated conditional expectation exhibit a typical cone shape suggesting
heteroscedasticity of the error (figure 2a).
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Figure 1 : QQ-plot of the Cholesky residuals from the linear mixed model (11) estimated on
the ALBI data set :

(a) CD4 in their natural scale
(b) CD41/4

(a)

(b)
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Figure 2 : Conditional residuals from the linear mixed model (11) estimated on the ALBI
data set versus predictions including the random effects.

(a) CD4 in their natural scale
(b) CD41/4
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3.3 Analysis of transformed data

We tried several transformations of CD4 and found the fourth root led to the best results for
adequacy of model (10) as it can be seen on the plot of conditional residuals (figure 2b) and the
QQ-plot of Cholesky residuals (figure 1b). With this transformation the value of the Royston
criteria was dramatically decreased to 2.5 (even if the Shapiro-Francia test was still significant
with p=0.02). Parameter of model (10) estimated on the transformed data are displayed in
table 1. Both models exhibit a treatment effect on CD4 counts change, a higher slope for the
D4T+DDI group, but interpretation of parameter values is more difficult when the transformed
variable is used. Futhermore, calculation of variance for the backtransformed prediction is not
direct. In addition, adjustment to the normal distribution is not yet perfect and questions arise
on the robustness of the model. Thus, it is interesting to investigate robustness of the linear
mixed model to heteroscedasticity and other departures from the model to evaluate the need
for such variable transformation.

4 Design of simulation

4.1 Overview

We carried out a simulation study to investigate robustness of parameter estimates from the
LMM (1) with Σi = σ2

eIni
when the errors eij are either correlated or non gaussian or of non

constant variance. We compared robustness of the random intercept model (denoted RI) and
of the model with random intercept and slope (denoted RIS). In the latter case, the estimated
model was given by (10) with α0i ∼ N(0, σ2

0
) , α1i ∼ N(0, σ2

1
) and eij ∼ N(0, σ2

e). The
random intercept model was defined by deleting α1itij from (10). This model allows to evaluate
impact of misspecification on both coefficients for the time-dependent variables (β1 and β3) and
for a time-independent covariate β2. Optimisations were performed using a Newton-Raphson
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like algorithm (Marquardt, 1963) and positivity constraints on the variance parameters were
satisfied by using a square root transformation.

4.2 Sampling scheme

The sample size N was 50 or 200 and three intra-subject sampling schemes were used :
- sparse balanced : ni=5 measures by suject at time 0,0.5,1,1.5,2
- intensive balanced : ni=9 measures by suject at time 0,0.25,0.5,0.75,1,1.25,1.5,1.75,2
- unbalanced : ni randomly selected between 3 and 7 and tij = 0, 0.5, 1, ...0.5 ∗ (ni − 1)
Thus, in the three cases, the mean follow-up time was 2 and the mean time of measurement

was 1.

4.3 Models for data generation

Data were generated using either the RIS or RI model with different modifications detailed
below. Parameter values were those obtained when model (10) was estimated on the ALBI
data set using the CD4 in their natural scale (see table 1). However, two values of σ2

e were
used (0.81 and 1.62) because the impact of a misspecifyed error distribution may depend on
the variance of the error compared to the other sources of variation in the data. In fact, as
in most simulated cases, results were very similar for both σ2

e values, we present only results
for σ2

e=1.62 except for the correlated error. Complete results are available upon request from
the first author. The binary covariate Xi was generated using a Bernouilli distribution with
probability p=0.5.

We used the random number generator Rcarry adapted fom James (1990) for U(0,1) vari-
ables and Norran adapted from Marsaglia and Tsang (1984) for the N(0,1) variables.

Standard linear mixed model

Data were generated by the correct model (RIS or RI) to validate the estimation method.
Heteroscedastic error

Three cases were studied.

• Variance depending on the conditional expectation : V ar(eij) = σ2

e + aE(Yij|αi)
4. Pa-

rameters value were chosen to obtain Royston V’ criterion for departure from normality
around the value observed on the ALBI data set. We chose σ2

e = 0.1 and a = 0.001 so
that V’=17.7 with var(eij) = 1 in the samples with N=200 and ni=5.

• Increasing variance with time : V ar(eij) = σ2

e + atij.

with σ2

e = 0.81 and a = 0.81 (E{var(eij)} = σ2

e + aE(tij) = 1.62).

• Variance depending on the covariate : V ar(eij) = σ2

e + aXi

with σ2

e = 0.82 and a = 1.60 (E{var(eij)} = σ2

e + a/2 = 1.62).

Correlated error

Data were generated using RIS or RI with correlated error including an autoregressive
structure :

eij = wij + εij,

where wij is a gaussian random variable with mean 0, constant variance σ2

w and covariance
σ2

wexp(−γ|tij − tik|) and the independent error εij is iid N(0, σ2

ε ). Variance parameters values
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were either σ2

ε = 0.25 and σ2

w = 0.56 (var(eij) = 0.81) or σ2

ε = 0.5 and σ2

w = 1.12 (var(eij) =
1.62). In both cases, γ = 0.64 so that corr(eij, eij′) = 0.5 if |tij − tij′ | = 0.5 (the minimum in
the unbalanced case) and corr(eij, eij′) = 0.1 if |tij − tij′| = 3 (the maximum in the unbalanced
case).

Non gaussian error

Data were generated by RIS or RI with various non gaussian errors (figure 3).

• Bimodal symmetric mixture of two gaussian distributions :

0.5N(−1.14, 0.572) + 0.5N(1.14, 0.572).

• Slightly asymmetric mixtures of gaussian distributions given by :

0.3N(0.848, 0.8952) + 0.7N(−0.363, 1.2372).

• A Gamma(
√

σ2
e/2,2) distribution which is franckly asymmetric.

• An Exponential distribution which is highly asymmetric

• A g-and-h distribution (Hoaglin, 1985)with g=0.2 and h=0.2 which is skewed and heavy-
tailed.

The three last distributions were centred and the g-and-h was rescaled to obtain E(eij) = 0
and var(eij) = 1.62
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Figure 3 : Densities of the non-gaussian distributions used in the simulation study
(a) Bimodal symmetric mixture of two gaussian distributions : 0.5N(−1.14, 0.572)+0.5N(1.14, 0.572)
(b) Asymmetric mixture of gaussian distributions : 0.3N(0.848, 0.8952)+0.7N(−0.363, 1.2372).

(c) Gamma(
√

1.62/2,2)

(d) Exponential with variance 1.62
(e) G-and-h distribution with g=h=0.2 and variance 1.6

(a) (b)
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5 Results

Coverage rates for the 95% confidence interval (CI) of the fixed parameter estimates are pre-
sented in tables 2,3 and 4.

Table 2 : Coverage rates of the 95% confidence intervals of the fixed effects from the random
intercept model (RI) and from the model with random intercept and slope (RIS) computed
using 1000 simulated data sets with correctly specified or heteroscedastic error distribution.

N=50 N=200
ni 3-7 5 9 3-7 5 9

RIS RI RIS RI RIS RI RIS RI RIS RI RIS RI
Gaussian independent errors with constant variance
β0 93.7 96.0 94.6 95.0 94.5 94.4 94.9 94.7 96.0 95.8 94.2 95.5
β1 95.2 95.8 95.1 95.5 95.1 95.5 95.4 96.1 96.2 94.6 93.8 95.7
β2 94.7 95.2 93.7 95.2 94.3 93.4 94.1 94.4 94.5 96.5* 95.9 95.8
β3 95.1 95.6 93.6 95.0 94.9 95.3 95.4 96.1 94.7 95.2 95.2 95.7
Heteroscedastic errors: V ar(eij) = 0.1 + 0.001E(Yij|αi)

4

β0 95.0 94.5 93.9 93.6 94.5 95.7 94.9 94.7 95.2 96.2 95.4 95.7
β1 95.5 93.9 95.4 94.3 94.4 92.8 95.2 94.1 93.7 93.8 95.3 94.6
β2 94.5 94.2 94.5 94.0 95.0 94.5 94.5 94.7 95.0 96.0 95.6 95.1
β3 94.8 94.4 94.7 94.8 95.4 93.0 95.2 94.6 94.2 93.8 95.4 93.2

Heteroscedastic errors : V ar(eij) = 0.81 + 0.81tij
β0 96.3 95.1 95.1 95.7 94.9 94.1 94.9 95.8 95.3 97.1 95.6 96.0
β1 94.6 93.5 94.7 94.9 96.7 91.2 95.5 93.4 94.9 94.0 95.4 92.2

β2 96.2 95.0 95.2 97.4 94.5 95.4 96.1 96.4 95.1 97.2 96.0 94.8
β3 95.6 93.7 95.7 95.4 96.8 91.4 95.8 94.0 96.2 94.9 96.5 94.4
Heteroscedastic errors: V ar(eij) = 0.82 + 1.60Xi

β0 97.2 97.0 96.7 96.0 95.2 95.5 96.7 97.2 96.1 96.3 96.7 95.7
β1 99.4 99.5 99.2 99.4 99.4 99.1 99.2 99.3 99.4 99.5 99.5 99.4

β2 93.6 94.0 95.1 95.7 93.0 94.5 95.4 95.3 94.2 94.2 95.3 95.0
β3 93.4 93.7 96.1 95.0 95.6 95.5 95.3 95.9 94.4 96.2 95.2 95.5

* Values significantly different from the nominal value 95% are in bold type

Table 2 shows that robustness to homoscedasticity assumption depends on the kind of
heterogeneous variance simulated. In the first case, chosen to mimic heteroscedasticity in the
ALBI data set, the variance of the error is a function of E(Yij|αi) and the confidence interval
are very robust : only tree coverage rates were significantly different from 95.0% , that is less
than 93.6% or above 96.4%, for the RI model and none for the RIS model.

When the error variance highly depends on time (V ar(eij|t = 2) = 3 × V ar(eij|t = 0)), the
RIS model is robust : few coverage rates were significantly different from 95% and they remained
close to the nominal value (between 94.5% and 96.8%). Once again, the RI model was less robust
(coverage rate range : 91.2% -97.4%) than the RIS model. When simulating data with more
moderate departure from homoscedasticity assumption (V ar(eij|t = 2) = 2 × V ar(eij|t = 0)),
every coverage rates were correct for the RIS model and only 6 values were significantly different
from 95% while remaining in the range 92.3% - 96.4% (results not shown).

When the variance depends on the treatment group, the coverage rate of the CI for the
slope in the reference group is biased. More precisely, when the variance is higher in the group
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with X=1 (V ar(eij|X = 1) = 3× V ar(eij|X = 0)), the variance of β̂1 is overestimated and the
confidence interval is too large (see table 2). On the reverse, when the variance is higher in the
group with X=0, the variance of β̂1 is underestimated and the confidence interval is too narrow
(results not shown, coverage rates between 88% and 92%). Additional simulations performed
with modest heteroscedasticity (V ar(eij|X = 1) = 1.5× V ar(eij|X = 0) also exhibited modest
but significant bias for the variance of the estimator of the slope (coverage rates between
96.5% and 97.5%). Thus compared with the two previous heteroscadastic cases studied, the
mixed model is less robust to heterogeneous variance associated with a covariate when the
model includes an interaction between time and this covariate (when the interaction was not
included, inference for the fixed effects was not impaired). However, in every simulations with
V ar(eij) = f(X), the test for the treatment effect is robust since the variance of β̂3 (the
difference between the slopes in the two groups) is correctly estimated (with nominal coverage
rate). To summarize when the variance depends on the treatment group, the variance of the
estimated slopes may be biased but the estimator of the variance of the difference between
slopes is robust. Another important point is that sensitivity to this kind of heteroscedasticity
is similar for the RIS and RI models.Lastly, in the various heteroscedastic data simulated, we
observed neither bias on the fixed effect estimates nor increase of the mean square error.

Table 3 : Coverage rates of the 95% confidence intervals of the fixed effects from the random
intercept model (RI) and from the model with random intercept and slope (RIS) computed

using 1000 simulated data sets with correlated error.

N=50 N=200
ni 3-7 5 9 3-7 5 9

RIS RI RIS RI RIS RI RIS RI RIS RI RIS RI
Correlated errors: σ2

ε = 0.25, σ2

w = 0.56 γ = 0.64
β0 94.0 95.2 92.7 93.9 93.0 92.6 94.5 94.2 93.4 93.2 94.3 92.8

β1 93.3 85.0 92.6 90.3 93.1 80.8 93.0 85.9 93.7 87.1 92.9 80.2

β2 93.1 93.4 92.4 93.8 93.2 91.5 94.6 95.3 93.8 95.1 94.5 92.9

β3 92.2 85.5 93.5 85.9 93.6 78.8 93.8 86.7 92.6 89.2 94.0 79.7

Correlated errors: σ2

ε = 0.5, σ2

w = 1.12 γ = 0.64
β0 91.5 93.4 91.9 92.2 92.2 95.7 94.3 93.9 94.1 94.8 93.9 95.5
β1 92.6 85.4 93.3 86.7 93.3 83.3 93.0 85.7 93.8 88.2 94.6 77.4

β2 92.9 93.6 92.7 91.9 92.7 95.1 94.3 94.3 93.1 94.3 94.1 94.6
β2 91.9 85.8 93.4 86.7 93.7 82.6 93.4 85.6 93.4 89.3 94.4 78.2

When the error was correlated (with an autoregressive error structure), results displayed in
table 3 confirm that the naive variance estimator of the estimated fixed effects may be biased
and that the RIS model is more robust than the RI model. For the RIS model many coverage
rates of CI were outside the range 93.6% - 96.4% but they remained close to the nominal value
(above 91%). On the contrary, inference on the RI model was severely compromised when the
correlation of the error was not taken into account : due to the underestimation of the variance
of the estimators, some coverage rates dropped under 80%. Inference for fixed covariates was
more robust than inference for time dependent covariates especially in large samples.

Finally, Table 4 shows robustness of both models (with or without random slope) to non
gaussian error. While the simulated errors were far from the assumed normal ditribution and, in
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some cases, severely skewed and heavy tailed, few coverage rates were significantly different from
the nominal value 95% and they were always above 92.7%. As expected, parameter estimates
were unbiased and simulations also showed that the mean square error of the fixed effects
was not increased. The robustness was better for parameter associated with time-dependent
variable (β̂1 and β̂3) .

Table 4 : Coverage rates of the 95% confidence intervals of the fixed effects from the random
intercept model (RI) and from the model with random intercept and slope (RIS) computed

using 1000 simulated data sets with non gaussian error distributions

N=50 N=200
ni 3-7 5 9 3-7 5 9

RIS RI RIS RI RIS RI RIS RI RIS RI RIS RI
Symmetric mixture: 0.5N(−1.14, 0.572) + 0.5N(1.14, 0.572)
β0 94.1 92.7 94.0 94.4 93.5 93.4 95.3 94.6 94.0 94.1 93.8 95.1
β1 94.9 95.1 96.2 96.0 95.8 94.1 95.8 93.4 95.3 95.8 92.9 95.7
β2 94.1 94.2 93.4 93.5 95.2 93.9 95.8 93.7 92.7 95.2 93.4 95.7
β3 96.1 93.9 95.3 95.1 95.7 95.7 94.1 94.7 95.8 95.1 93.7 95.7
Asymmetric mixture: 0.3N(0.848, 0.8952) + 0.7N(−0.363, 1.2372)
β0 95.1 94.4 95.4 94.3 93.2 94.4 94.5 95.5 95.0 96.2 93.7 95.1
β1 94.5 95.0 93.7 94.2 94.0 95.0 95.9 94.3 94.6 95.9 95.2 95.1
β2 93.6 94.1 93.3 96.0 93.0 94.2 94.6 94.5 95.1 94.5 94.6 95.8
β3 93.3 94.1 95.4 94.4 96.0 95.1 95.1 95.1 94.7 95.8 94.6 94.6

Gamma: (
√

1.62/2,2)

β0 94.0 93.4 93.1 94.7 94.7 94.2 95.0 95.3 94.8 94.3 96.7 94.5
β1 94.4 94.5 94.6 94.6 95.4 94.6 95.6 96.1 96.4 94.6 95.8 95.5
β2 94.0 94.6 94.2 95.2 94.5 94.6 95.3 94.2 96.1 94.7 95.2 95.0
β3 94.9 94.7 95.2 94.0 96.1 95.0 95.2 95.0 95.2 95.8 94.5 94.8
Exponential: σ2

e = 1.62
β0 94.4 95.6 95.0 95.3 95.0 94.0 95.4 93.9 95.5 95.1 94.8 95.2
β1 93.8 95.6 94.1 95.0 95.1 95.0 95.5 94.8 95.8 95.0 94.6 94.1
β2 93.9 94.1 93.6 95.1 94.8 94.1 94.7 94.0 94.2 94.5 94.6 94.8
β3 94.5 95.8 95.1 94.6 95.3 96.4 94.4 94.4 96.1 96.3 95.0 94.9
G-and-h distribution: g = 0.2, h = 0.2, σ2

e = 1.62
β0 94.4 95.5 95.1 94.0 93.5 94.3 93.5 94.4 94.9 95.4 94.4 95.1
β1 94.1 94.7 96.0 94.8 94.8 95.0 95.0 95.7 95.1 95.1 94.6 94.9
β2 94.0 95.3 95.1 94.5 94.3 93.7 94.7 94.8 94.3 96.0 94.3 94.5
β3 94.1 95.7 95.5 95.0 95.0 94.9 95.1 96.1 94.9 95.6 95.0 95.4

6 Discussion

This study highlighted that, with moderate sample size (n=50 or n=200), inference on fixed
effects from a linear mixed effects model assuming independent gaussian error with homoge-
neous variance was not impaired when the true error distribution was either non gaussian or
heteroscedastic (except for covariate-dependent variance as discussed below). Knowing the ro-
bustness of the simple linear model, these results were not completely surprising. However,
they can be of interest for applied statistician because they show that transformations of the
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data, which complicate interpretation of model parameters, are not necessary. This is especially
important for non-gaussian continuous responses because mixed models for such longitudinal
data are not available in standard software while it is possible to estimate mixed models with
heteroscedastic error using for instance SAS Proc Nlmixed.

Our results however underlined that inference on the slopes are sensitive to heterogeneous
error variance when the variance depends on a covariate included in the model with interaction
with time. Thus, when studying a treatment effect, it should be useful to compare variances of
the residuals in the two groups or to check the homogeneous variance assumption by estimating a
model with variance depending on the treatment. Neverthless, inference on the treatment effect
(difference between the slopes in the two groups) is robust to this kind of heteroscedasticity.

As it was previously shown (Lange and Laird, 1989; Taylor et al, 1994), our results confirmed
that the mixed model with random intercept and slope is more robust to misspecification of
the covariance structure than the random intercept model. Poor coverage rates for the random
intercept model are due to biased estimates of the variances of the fixed effects and could be
corrected using the robust variance estimator (Liang and Zeger, 1986). In this field, we have
only investigated the case of an autoregressive error structure because other structures had been
previously studied (Lange and Laird, 1989; Taylor et al, 1994). Moreover, it is easy in standard
software to include correlated error in a linear mixed model without blurring interpretation of
fixed effects.

Some authors (Richardson and Welsh, 1995; Copt and Victoria-Feser, 2006) have investi-
gated the robustness of maximum likelihood estimators to outlying observations by simulating
the error from a comtaminated normal distribution (0.9N(0, 1) + 0.1N(0, 11)). We conducted
an additional simulation study using this contaminated distribution and found, as these au-
thors, that fixed effects estimators were robust while variance components estimators were
impaired (results not shown). As expected, Copt and Victoria-Feser (2006) reported biases for
the fixed effects only when the mean of the contaminated error distribution was not null (which
is equivalent to misspecify the mean structure of the model).

More generally, this study only focused on inference for fixed effects which is the unique
objective of the longitudinal analysis in most cases. It is obvious and it was checked in our
simulation study (results not shown), that variance parameter estimates and random effects
may be biased when the covariance structure is misspecified. For instance, some authors have
investigated lack of robustness of variance components estimators Taylor and Law (1998) have
shown that individual predictions are affected by misspecified covariance structure. Thus, when
random effects estimates or individual predictions are of interest, the distribution assumption
for the error must be carefully checked. Indeed, random effects or individual predictions may
be used as covariates in survival model either in a two step approach (Thiebaut et al, 2003)
or in a joint model (Tsiatis and Davidian, 2004) to study association between evolution of the
repeated measures and an event. In such a study, graphical evaluation of the assumed N(0,1)
distribution of Cholesky residuals may be useful but they do not allow to distinguish between
misspecification of the error structure and of the fixed part of the model. It would be better
but not always feasible with standard softwares, to evaluate sensitivity of the results to the
various assumptions using model including heteroscedastic, correlated or non gaussian error.
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