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Abstract

Background: Chronic alveolar hypoxia results in sustained arterial constriction, and increase in

pulmonary vascular resistance leading to pulmonary artery hypertension (PAHT). The aim of this

study was to investigate the effect of propofol and etomidate on pulmonary artery (PA) reactivity

in chronically hypoxic (CH) rats, a model of pulmonary arterial hypertension (PAHT), in normoxic

animals, and human PA.

Methods: CH rats were maintained 14 days at 380 mmHg pressure in a hypobaric chamber.

Human tissue was retrieved from histological lung pieces from patients undergoing resection for

carcinoma. Cumulative concentrations of anaesthetics were tested on isolated vascular rings

precontracted with phenylephrine (PHE) or 100 mM KCl. Statistical comparisons were done by

ANOVA, followed, when needed, by Student t tests with Bonferroni correction as post-hoc tests.

Results: In normoxic rat PA, maximal relaxation (Rmax) induced by etomidate and propofol was

101.3 ± 0.8% and 94.0 ± 2.3%, respectively, in KCl-precontracted rings, and 63.3 ± 9.7% and 46.1

± 9.1%, respectively, in PHE-precontracted rings (n = 7). In KCl-precontracted human PA, Rmax was

84.7 ± 8.6 % and 66.5 ± 11.8%, for etomidate and propofol, respectively, and 154.2 ± 22.4 % and

51.6 ± 15.1 %, respectively, in PHE-precontracted human PA (n = 7). In CH rat PA, the relaxant

effect of both anaesthetics was increased in PHE-precontracted and, for etomidate only, in KCl-

precontracted PA. In aorta, CH induced no change in the relaxant effect of anaesthetics.

Conclusion: Propofol and etomidate have relaxant properties in PA from human and normoxic

rat. The relaxant effect is specifically accentuated in PA from CH rat, mainly via an effect on the

pharmacomechanical coupling. Etomidate appears to be more efficient than propofol at identical

concentration, but, taking into account clinical concentrations, etomidate is less potent than

propofol, which effect was in the range of clinical doses. Although these findings provide

experimental support for the preferential use of etomidate for haemodynamic stability in patients

suffering from PAHT, the clinical relevance of the observations requires further investigation.
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Background
Chronic hypoxia (CH) occurs in people living at high alti-
tude and in children who suffer congenital heart disease
with left to right shunt; it is also a main characteristic of
chronic obstructive pulmonary disease, a major cause of
death that affects a significant proportion of adults.
Chronic alveolar hypoxia results in sustained arterial con-
striction, an increase in pulmonary vascular resistance
leading to pulmonary artery hypertension (PAHT). At last,
PAHT is responsible for right ventricular failure, which
may end in death [1,2]. Patients with PAHT may undergo
anaesthesia, i. e., for cardiac surgery or heart catheterisa-
tion. During general anaesthesia of such patients, varia-
tions in cardiac and pulmonary flows may lead to
dangerous increase or decrease of systemic or pulmonary
pressures. Such variations during catheterism would make
the procedure useless. It is then important to consider the
effects of the anaesthetics on vascular responsiveness.

The effect of etomidate on vascular reactivity has been
poorly investigated. Early clinical studies showed that
anaesthesia with etomidate induces little or no change in
both pulmonary and systemic arterial pressure [3,4]. Mur-
day et al. [5] had observed an increase in pulmonary vas-
cular resistance and a decrease in systemic vascular
resistance in patients undergoing cardiac surgery, whereas
Shapiro et al evidenced a decrease in mean arterial pres-
sure [6]. In experimental studies, etomidate has been
shown to inhibit relaxant responses in canine pulmonary
arteries [7]. Experiments on isolated rat lung indicated
that etomidate is a direct pulmonary vasoconstrictor [8].
The effect of etomidate on systemic and pulmonary vascu-
lature remains hence unclear.

Propofol has become a widely used general anaesthetic
during the last decade and was studied in many clinical
trials. However, its effect on pulmonary vasculature is
unclear. In some clinical trial, propofol altered neither
pulmonary mean arterial pressure nor pulmonary vascu-
lar resistance, though it decreased systemic vascular resist-
ance [9], whereas in other studies it was shown to decrease
both pulmonary arterial pressure and pulmonary arterial
resistance [10]. Experimental studies on rats isolated
lungs showed a direct vasodilatant effect of propofol [8],
and a relaxant effect was also evidenced on rat isolated
pulmonary arterial rings [11,12]. By contrast, it has been
shown in dogs and canine isolated pulmonary arterial
rings that propofol potentiates phenylephrine-induced
vasoconstriction [13,14]. As for etomidate, the effect of
propofol on pulmonary artery remains hence highly con-
troversial.

Most of the experimental studies have been performed on
normal arteries. However, PAHT is associated with mor-
phological and functional changes of pulmonary artery,

mainly hypertrophy and hyperplasia of smooth muscle
cells, and altered vascular reactivity and Ca2+ homeostasis
[15,16]. These functional and morphological alterations
have been noted both in small intralobar PA and in main
PA, indicating that main PA can be used as a relevant
model for the study of pulmonary vasomotricity in CH
conditions [17-22]. We have hence assessed the effects of
propofol and etomidate on main pulmonary artery reac-
tivity of chronically hypoxic (CH) rats, a model of PAHT,
versus normoxic rat and human isolated pulmonary arter-
ies. Since chronic hypoxia has differential effects on the
systemic versus the pulmonary vasculature, we compared
the results obtained in rat pulmonary artery with those
obtained in systemic thoracic vasculature, i. e., thoracic
aorta, in order to determine if the changes in the effect of
anaesthetics observed in pulmonary artery were specific.

Methods
Chronic hypoxia protocol

The animals used in this study were treated and sacrificed
in accordance with national guidelines, and the protocol
accepted by local animal experimentation committee.
Male Wistar rats, 8–10 weeks old, were exposed to a sim-
ulated altitude of 5500 m (barometric pressure 380
mmHg) in a well-ventilated, temperature-controlled
hypobaric chamber for 14 days, as previously described
[23,24]. Such a protocol is classically used to generate
PAHT [18,19,25,26]. In previous studies, our laboratory
has characterized this model of hypobaric hypoxia-
induced PAHT and shown that this protocol consistently
increases mean pulmonary arterial pressure, vessel wall
thickness and produces right ventricular hypertrophy evi-
denced by an increase in the ratio of right ventricle to left
ventricle + septum weight (RV/LVS) [15,23,27-30]. Nor-
moxic rats were kept under similar conditions but not in
the hypobaric chamber.

Tissue preparation

Rat pulmonary arteries and aorta from normoxic and
hypoxic animals were obtained as follows: for each exper-
iment, a rat was killed by cervical dislocation. The heart
and lungs were removed en-bloc, and the extrapulmonary
artery and the thoracic part of the aorta were rapidly dis-
sected out. From each specimen, 3 rings 3–4 mm in length
were obtained from the main, left and right extrapulmo-
nary artery, and 3 rings of similar length from the thoracic
portion of the aorta.

Human bronchial rings were obtained from lung pieces
collected for histological examination following resection
for carcinoma. Specimens were selected from 7 patients
for whom no sign of pulmonary hypertension appeared
after pulmonary radiology and clinical examination.
Patients were 60.6 ± 4.1 years old. Their lung function was
within the normal range: mean forced expiratory volume
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in 1 second (FEV1) was 84.4 ± 6.4% of predicted values
and mean partial O2 pressure was 83.7 ± 3.3 mm Hg.

Quickly after resection, segments of pulmonary arteries
(3rd to 5th generation; 3–5 mm in internal diameter) were
carefully dissected from a macroscopically tumour-free
part of each of the histological pieces and transferred to
the laboratory in an ice-cold physiological saline solution.
Segments were then cut into rings measuring about 4–5
mm in length for isometric contraction measurements.
Use of human tissues was performed according to
national guidelines, in compliance with the Helsinki Dec-
laration. Since tissues were obtained incidentally to
patient surgery and discarded by the histological patholo-
gist, specific ethical approval of the protocol was not
required by French laws.

Isometric tension measurement

Isometric tension was measured in intact, i. e., with
endothelium, vessel rings that were mounted between
two stainless steel clips in vertical 20 ml organ baths of a
computerized isolated organ bath system (IOX, EMKA
Technologies, Paris, France) previously described [15,24].
Baths were filled with Krebs-Henseleit (KH) solution
(composition given below) maintained at 37°C and bub-
bled with a 95% O2-5% CO2 gas mixture. The upper stain-
less clip was connected to an isometric force transducer
(EMKA Technologies). Tissues were set at optimal length
(Lo) by equilibration against a passive load of 1.5 g in rat
aorta, normoxic human and rat pulmonary arteries, and
2.5 g in CH rat pulmonary arteries, as determined for
these types of preparation in control experiments (data
not shown).

The relaxant effect of cumulative concentrations of etomi-
date and propofol on precontraction to phenylephrine
and KCl was assessed as follows. At the beginning of each
experiment, prior to exposure to anaesthetics, a contrac-
tion was elicited by either a hyperpotassic extracellular
solution containing 100 mM KCl or 10-6 M phenylephrine
(PHE). According to the Nernst equation, 100 mM KCl
depolarises the membrane potential close to -10 mV,
which opens the voltage-operated Ca2+ channels and thus
activates the electromechanical coupling. PHE is an α1-
adrenergic agonist that binds to G protein-coupled recep-
tor and acts mainly via InsP3 production and Ca2+ release
from intracellular stores, the so-called pharmacomechan-
ical coupling.10-6 M PHE induces an inframaximal con-
tractile response, as determined from a cumulative-
concentration response curve to PHE in rat aorta and pul-
monary artery (n = 4, data not shown). Upon KCl or PHE
administration, when the maximal contraction was
obtained, propofol or etomidate was added to the vessel
rings in cumulative half-log increments from 10-6 to 10-3

M. The ring tension was measured when the response sta-
bilized, i.e., after an equilibration time about 15 min, and
expressed as a percentage of the maximal initial contrac-
tion of that ring. To avoid any bias due to time-dependent

Relaxant effect of etomidate and propofol on normoxic rat pulmonary arterial ringsFigure 1
Relaxant effect of etomidate and propofol on nor-
moxic rat pulmonary arterial rings. Abscissa: log con-
centration of anaesthetics (M). Ordinate: isometric 
contraction (% of the paired temporal control unexposed 
rings). Full circles: rings exposed to etomidate. Open circles: 
rings exposed to propofol. A: rings precontracted with 100 
mM KCl. B: rings precontracted with 10 -6M PHE. Each sym-
bol is mean value from 5 to 8 rats. Vertical bars are SEM. P > 
0.05 (overall comparison of etomidate versus propofol).
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change in tension, the anaesthetic-induced relaxation was
normalized to a paired temporal ring, i.e., a ring experi-
mented simultaneously in similar conditions but without
exposure to the anaesthetics.

Chemicals and drugs

PHE were purchased from Sigma (Saint Quentin Fallavier,
France). Propofol (Diprivan®, Zeneca laboratories, Cergy
France) and etomidate (Hypnomidate®, Janssen laborato-
ries, Boulogne Billancourt, France) were obtained from
their clinically used presentations. We verified that the
vehicle of each of the drugs had no effect per se on contrac-
tile responses up to the maximal concentration used in
the present experiments, i. e., 1.65%. Normal KH solution
contained (in mM): 118.4 NaCl, 4.7 KCl, 2.5
CaCl2.2H2O, 1.2 MgSO4.7H2O, 1.2 KH2PO4, 25.0
NaHCO3, 11.1 D-glucose, pH 7.4. For KCl-induced con-
traction, KCl was substituted to NaCl for the desired con-
centrations, in order to keep the osmotic pressure
constant.

Analysis of results and statistics

The relaxation induced by each concentration of anaes-
thetic was expressed as a percentage of the contractile
response of the paired temporal control. The concentra-
tion-dependent relaxation curves were then fitted by a
non-linear Boltzman equation used to determine the con-
centrations of anaesthetics that reduced the maximal con-
traction by 50% (IC50) and by 30% (IC30), reported as
negative logarithm (pIC50 and pIC30, respectively),
according to Lovren and Triggle [31], and as we previously
used in airways [24]. Rmax refers to the maximal relaxation
obtained at the maximal anaesthetic concentration (10-3

M).

Each experimental condition was repeated on 6 to 9 dif-
ferent specimens. Data are given as mean ± SEM. Overall
cumulative concentration-response curves in control, eto-
midate- and propofol-exposed rings were compared using
ANOVA for repeated measurements. Comparison of
pIC30, pIC50 and Rmax was done by ANOVA, followed,
when needed, by Student t tests with Bonferroni correc-
tion as post-hoc tests. Statistical tests were performed using
the SPSS® statistical software. Differences were considered
significant when P < 0.05.

Results
Effect of etomidate and propofol on normoxic rat 

pulmonary arterial rings

Both etomidate and propofol significantly relaxed precon-
tracted PA rings (figure 1). Overall comparison of the
curves showed no difference in the effect of propofol ver-

sus etomidate in KCl- as well as in PHE-precontracted
rings. The relaxant effect of both compounds was greater
on KCl-precontracted PA rings, since pIC30, pIC50 and

Rmax were significantly greater in KCl- than PHE-precon-
tracted tissues (tables 1 and 2).

Effect of etomidate and propofol on human pulmonary 

artery rings

Overall comparison of the curves showed that propofol
and etomidate had a similar concentration-dependent
relaxant effect, as shown in fig. 2, despite an apparent
greater effect for the highest concentration of etomidate in
PHE-precontracted rings. Comparison of human versus

normoxic rat PA showed that, for both anaesthetics, Rmax

was similar or higher in human PA. However, in KCl-pre-
contracted rings, pIC30 and pIC50 were higher in rat PA
(tables 1 and 2).

Effect of etomidate and propofol on CH rat pulmonary 

arterial rings

Both etomidate and propofol significantly relaxed precon-
tracted PA rings from chronically hypoxic rats (figure 3).
Overall comparison of the curves showed no difference in
the effect of propofol versus etomidate in KCl-precon-
tracted rings, whereas etomidate was more potent than
propofol in PHE-precontracted PA rings. In contrast with
observations on normoxic PA, no significant difference
was observed in Rmax and pIC30 between KCl- and PHE-
precontracted tissues (tables 1 and 2). Comparison
between results obtained in PA from normoxic and CH
rats showed that in PHE-precontracted rings, Rmax, pIC30

and pIC50 were higher in CH tissues. In KCl-precontracted
rings, though Rmax was greater in CH rings for both anaes-
thetics, the difference was significant only for etomidate,
and no change was observed for pIC30 and pIC50 (tables 1
and 2).

Effect of etomidate and propofol on normoxic and CH rat 

thoracic aorta

In rings from normoxic rats, both propofol and etomidate
had a significant relaxant effect on KCl-and PHE-precon-
tracted aortic rings (figure 4). Overall comparison of the
curves indicated that etomidate and propofol had a simi-
lar effect on KCl-precontracted aorta, but that etomidate
was more potent than propofol in PHE-precontracted tis-
sues. Comparisons of Rmax and pIC30 and pIC50 showed
that the relaxant effect of propofol, but not of etomidate,
was greater on KCl-precontracted rings (tables 1 and 2). In
rings from CH rats, both propofol and etomidate had also
a significant relaxant effect on KCl-and PHE-precon-
tracted rings. Overall comparison of CCRC indicated that
etomidate and propofol had a similar effect, whatever the
contractant agonist. Comparison of Rmax, pIC30 and pIC50

between normoxic and CH aorta showed that the only dif-
ference observed was an increase in the maximal relaxa-
tion to propofol in PHE-precontracted CH aorta (tables 1
and 2).
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Discussion
Our results show that propofol and etomidate display a
concentration-dependent relaxant effect on pulmonary
vasculature. The effect of propofol on PA observed in this
study is in accordance with several experimental data that
have shown a relaxant effect of propofol on PA [8,11,12]
However, some studies have evidenced a contractant
effect of propofol on PA [13,14,32,33]. The discrepancy
with our study may be due to species differences, since
these studies, showing a contractant effect of propofol on
PA, were performed in dogs or on canine isolated tissues,
whereas we evidenced a relaxant effect of propofol in both
rat and human PA. In pulmonary artery, etomidate
appeared to have a similar or even greater relaxant effect
than propofol. Again, this result is in disagreement with
previous studies that have evidenced an antirelaxant effect
of etomidate in canine pulmonary artery [34]. In addition
to species or tissues differences, it should also be noticed
that in these studies the experimental conditions differed

from ours and focused on the possible effect of etomidate
on relaxant agents, not contractant ones.

Comparison of the Rmax obtained in rat versus human pul-
monary arteries indicates that both anaesthetics have sim-
ilar or even greater maximal relaxant effect in human
compared to rat tissues. However, it should be noticed
that for etomidate as well as propofol, pIC30 and pIC50

were higher in rat than in human PA precontracted with
KCl. This indicates that, though both anaesthetics have a
relaxant effect on PA from both species, human PA is less
sensitive than rat one to the effect of propofol and etomi-
date, suggesting small, if any, relaxant effect of etomidate
and propofol on normoxic human pulmonary artery at
clinical concentrations.

For the two anaesthetics tested, the relaxant effect was
greater in CH versus normoxic tissues. Though experi-
ments, for obvious ethical considerations, have not been

Table 1: Rmax, pIC30 and pIC50 of etomidate on rat pulmonary and aorta and on human pulmonary artery precontracted by KCl and 

PHE

Rmax (%control) pIC30 (M) pIC50 (M) n

normoxic rat PA KCl 101.3 ± 0.8*† 4.32 ± 0.12*‡ 4.06 ± 0.13*‡ 7

PHE 63.3 ± 9.7†‡° 3.78 ± 0.19† 3.03 ± 0.44† 7

human PA KCl 84.7 ± 8.6* 3.74 ± 0.12‡ 3.46 ± 0.12 7

PHE 154.2 ± 22.4 3.64 ± 0.16 3.48 ± 0.14 7

CH rat PA KCl 150.0 ± 22.4 4.59 ± 0.11 4.34 ± 0.10 9

PHE 149.5 ± 19.0 4.55 ± 0.19 4.32 ± 0.19 6

normoxic rat aorta KCl 107.0 ± 3.1 4.16 ± 0.10 3.87 ± 0.09† 9

PHE 107.0 ± 1.6 4.12 ± 0.14 3.79 ± 0.09† 7

CH rat aorta KCl 112.2 ± 6.6 4.38 ± 0.04 4.11 ± 0.06 8

PHE 132.7 ± 28.7 4.54 ± 0.16 4.23 ± 0.17 6

Mean maximal relaxation to etomidate (Rmax, % control), and mean 50% and 30% maximal contraction inhibitory concentrations (pIC50 and pIC30, 
M) in pulmonary artery (PA) and aorta from normoxic and chronically hypoxic (CH) rat and in human pulmonary artery precontracted with 80 mM 
KCl (KCl) and 10-6 M phenylephrine (PHE). Rmax, pIC50 and pIC30 values are mean ± SEM. *P < 0.05 KCl versus PHE; †P < 0.05 normoxic versus HC 
tissues; ‡P < 0.05 rat PA versus Human PA; °P < 0.05 PA versus aorta.

Table 2: Rmax, pIC30 and pIC50 of propofol on rat pulmonary and aorta and on human pulmonary artery precontracted by KCl and PHE

Rmax (%control) pIC30 (M) pIC50 (M) n

normoxic rat PA KCl 94.0 ± 2.3*° 4.69 ± 0.14*‡° 4.35 ± 0.14‡° 7

PHE 46.1 ± 9.1† 3.54 ± 0.26† 1.96 ± 0.76† 7

human PA KCl 66.5 ± 11.8 3.69 ± 0.16‡ 3.01 ± 0.30‡ 7

PHE 51.6 ± 15.0 3.33 ± 0.34 3.00 ± 0.49 7

CH rat PA KCl 127.4 ± 15.9 4.83 ± 0.17 4.49 ± 0.17 9

PHE 90.1 ± 11.7 4.30 ± 0.17 3.86 ± 0.23 6

normoxic rat aorta KCl 79.9 ± 5.3* 4.32 ± 0.10* 3.89 ± 0.14* 9

PHE 48.1 ± 5.3† 3.53 ± 0.14 2.69 ± 0.38 7

CH rat aorta KCl 101.3 ± 16.7 4.45 ± 0.10 4.15 ± 0.11 8

PHE 73.1 ± 5.0 4.09 ± 0.24 3.61 ± 0.20 6

Mean maximal relaxation to propofol (Rmax, % control), and mean 50% and 30% maximal contraction inhibitory concentrations (pIC50 and pIC30, M) 
in pulmonary artery (PA) and aorta from normoxic and chronically hypoxic (CH) rat and in human pulmonary artery precontracted with 100 mM 
KCl (KCl) and 10-6 M phenylephrine (PHE). Rmax, pIC50 and pIC30 values are mean ± SEM. *P < 0.05 KCl versus PHE; †P < 0.05 normoxic versus HC 
tissues; ‡P < 0.05 rat PA versus Human PA; °P < 0.05 PA versus aorta.
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performed in human tissues from CH hypoxic patients
(CH been a usual counterindication for lung surgery), our
results suggest that the effect of these anaesthetics on
haemodynamics may be greater in patients suffering
chronic hypoxia, especially on pulmonary haemodynam-
ics. CH has different effects on systemic and pulmonary
vasculature. It has been shown that hypoxia induces sys-
temic vasorelaxation and CH does not induce morpholog-
ical changes in systemic vasculature [35]. By contrast,
hypoxia induces a specific vasoconstriction in pulmonary
artery, and CH induces pulmonary hypertension and
remodelling [15,16,36]. Our study showed that the
enhanced relaxant effect of etomidate and propofol in tis-
sues from CH animals is principally observed in pulmo-
nary artery. This indicates that the changes in anaesthetic
sensitivity are not due to chronic hypoxia per se, but spe-
cifically associated with the CH-induced pulmonary
hypertension.

The enhanced effect of the anaesthetics was mainly
observed on PHE-precontracted PA. Hence, the increased
sensitivity of CH PA is mainly due to an enhanced effect
of the anaesthetics on the pharmacomechanical coupling.
This suggests that chronic hypoxia modifies the pharma-
comechanical coupling of pulmonary artery, in agreement
with previous findings on CH-induced calcium signalling
in pulmonary arterial smooth muscle cells [15]. Since the
pharmacomechanical coupling is activated not only by α-
adrenergic stimulation but also by several major physio-
logical vasoactive agonists such as endothelin 1 and angi-
otensin 2, it is likely that propofol and etomidate may
alter the physiological regulation of the pulmonary vaso-
motricity. Several authors have described an endothe-
lium-dependent effect of propofol and etomidate on
pulmonary vascular resistance [32,34]. Since our experi-
ments were performed in rings with intact endothelium,
we cannot exclude that the enhanced relaxant effect of
these anaesthetics on pulmonary arteries from CH rats
may be endothelium-mediated. However, the endothe-
lium-dependent effect of these anaesthetics have been evi-
denced on ACh-induced relaxation, whereas the effect of
propofol and etomidate on pulmonary arteries stimulated
by contractile agonists has been shown to be endothe-
lium-independent [8,11,13,14,32,34]. In particular, the
effect of propofol, which was shown to be epithelium-
dependent when assessed on ACh-induced relaxation
[32], appeared to be epithelium-independent when tested
on α-adrenergic contraction [11,14], though with oppo-
site consequence in dogs [14] and rats [11], as mentioned
above. Since the enhanced effect of both anaesthetics were
mainly observed on phenylephrine-precontracted rings, it
is therefore likely that this effect may be endothelium-
independent.

Relaxant effect of etomidate and propofol on human pulmo-nary arterial ringsFigure 2
Relaxant effect of etomidate and propofol on human 
pulmonary arterial rings. Abscissa: log concentration of 
anaesthetics (M). Ordinate: isometric contraction (% of the 
paired temporal control unexposed rings). Full circles: rings 
exposed to etomidate. Open circles: rings exposed to propo-
fol. A: rings precontracted with 100 mM KCl. B: rings pre-
contracted with 10 -6M PHE. Each symbol is mean value from 
7 specimens. Vertical bars are SEM. P > 0.05 (overall compar-
ison of etomidate versus propofol).
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Though pulmonary artery and aorta rings used in this
study were from chronically hypoxic animals, the experi-
mental conditions for isometric measurements were not
hypoxic, rather hyperoxic, since tissues were bubbled with
95% O2 and 5% CO2. Since anesthetized patients are usu-
ally ventilated with hyperoxic gas mixture, our experimen-
tal conditions remain, nevertheless, clinically relevant.

Blood concentrations of propofol and etomidate, follow-
ing clinical injection, are about 3–15 µg.mL-1 and 0.5–1,6µg.mL-1, respectively [37-41]. This corresponds to 10-5-10-

4 M for propofol concentration, and about 2–6.10-6 M for
etomidate. At these concentrations, below IC30 values,
etomidate has no significant relaxant effect in normoxic
tissues and, though enhanced, small effect on CH ones.
This may explain why clinical studies have generally not
concluded to a relaxant effect of etomidate on PA [5,8],
and suggests a small, if any, effect of etomidate on pulmo-
nary haemodynamics in CH patients. By contrast, clinical
concentrations of propofol may be in the same range of
IC30 values. This may explain why some authors have con-
cluded that propofol infusion at clinical doses decreases
pulmonary arterial pressure and pulmonary arterial resist-
ances [10]. Moreover, since the relaxant effect was
increased in CH rat pulmonary arteries, the effect of pro-
pofol on pulmonary haemodynamics may be higher in
CH subjects. Hence, our study provides experimental sup-
port for the preferential use of etomidate for the mainte-
nance of haemodynamic stability in patients suffering
from PAHT. However, one should be cautious in extrapo-
lating ex vivo data to in vivo conditions, in particular
because of the high protein binding of these compounds
which decreases their free concentrations and hence their
biological effect [42].

Conclusion
In conclusion, our study demonstrates that in normoxic
rats etomidate and propofol have a relaxant effect on pul-
monary artery, acting mainly on the electromechanical
coupling and, to a lesser degree, on the pharmacological
coupling. A relaxant effect was also observed in human
pulmonary artery, though human PA appears to be less
sensitive to the anaesthetics than rat one. The effects of
both anaesthetics were greater on PA from an animal
model of hypoxia-induced pulmonary hypertension. This
enhanced relaxant effect was specific to PA and was
mainly seen on the pharmacomechanical coupling. Eto-
midate appears to be more efficient than propofol at iden-
tical concentration. However, comparison that take into
account difference between etomidate and propofol con-
centrations used at clinical doses indicates that etomidate
is less potent than propofol, which may have an effect on
pulmonary haemodynamics, especially in subjects suffer-
ing CH and PAHT. Although these findings provide exper-
imental support for the preferential use of etomidate in

Relaxant effect of etomidate and propofol on pulmonary arterial rings from chronically hypoxic ratsFigure 3
Relaxant effect of etomidate and propofol on pulmo-
nary arterial rings from chronically hypoxic rats. 
Abscissa: log concentration of anaesthetics (M). Ordinate: 
isometric contraction (% of the paired temporal control 
unexposed rings). Full circles: rings exposed to etomidate. 
Open circles: rings exposed to propofol. A: rings precon-
tracted with 100 KCl. B: rings precontracted with 10-6M 
PHE. Each symbol is mean value from 5 to 8 rats. Vertical 
bars are SEM. # P < 0.05 (overall comparison of etomidate 
versus propofol).

log[anesthetic]
-6 -5 -4 -3

160

140

120

100

80

60

40

20

0A

B

log[anesthetic]
-6 -5 -4 -3

160

140

120

100

80

60

40

20

0

Ouedraogo et al, figure 3

#

%
 r

e
la

x
a
ti
o

n
 (

K
C

l 
re

s
p

o
n
s
e
)

%
 r

e
la

x
a
ti
o

n
 (

P
H

E
 r

e
s
p

o
n
s
e
)



BMC Anesthesiology 2006, 6:2 http://www.biomedcentral.com/1471-2253/6/2

Page 8 of 10

(page number not for citation purposes)

Relaxant effect of etomidate and propofol on rat aorta ringsFigure 4
Relaxant effect of etomidate and propofol on rat aorta rings. Left panel: aorta rings from normoxic rat. Right panel: 
aorta rings from CH rat CH Abscissa: log concentration of anaesthetics (M). Ordinate: isometric contraction (% of the paired 
temporal control unexposed rings). Full circles: rings exposed to etomidate. Open circles: rings exposed to propofol. A: rings 
precontracted with 100 mM KCl. B: rings precontracted with 10 -6M PHE. Each symbol is mean value from 5 to 8 rats. Vertical 
bars are SEM. # P < 0.05 (overall comparison of etomidate versus propofol).
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patients suffering from PAHT, the clinical relevance of the
observations requires further investigation.
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