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Abstract

Background: CD40L was found to reduce doxorubicin-induced apoptosis in non Hodgkin's

lymphoma cell lines through caspase-3 dependent mechanism. Whether this represents a general

mechanism for other tumor types is unknown.

Methods: The resistance induced by CD40L against apoptosis induced by a panel of cytotoxic

chemotherapeutic drugs in non Hodgkin's lymphoma and breast carcinoma cell lines was

investigated.

Results: Doxorubicin, cisplatyl, etoposide, vinblastin and paclitaxel increased apoptosis in a dose-

dependent manner in breast carcinoma as well as in non Hodgkin's lymphoma cell lines. Co-culture

with irradiated L cells expressing CD40L significantly reduced the percentage of apoptotic cells in

breast carcinoma and non Hodgkin's lymphoma cell lines treated with these drugs. In breast

carcinoma cell lines, these 5 drugs induced an inconsistent increase of caspase-3/7 activity, while in

non Hodgkin's lymphoma cell lines all 5 drugs increased caspase-3/7 activity up to 28-fold above

baseline. Co-culture with CD40L L cells reduced (-39% to -89%) the activation of caspase-3/7

induced by these agents in all 5 non Hodgkin's lymphoma cell lines, but in none of the 2 breast

carcinoma cell lines. Co culture with CD40L L cells also blocked the apoptosis induced by

exogenous ceramides in breast carcinoma and non Hodgkin's lymphoma cell lines through a

caspase-3-like, 8-like and 9-like dependent pathways.

Conclusion: These results indicate that CD40L expressed on adjacent non tumoral cells induces

multidrug resistance to cytotoxic agents and ceramides in both breast carcinoma and non

Hodgkin's lymphoma cell lines, albeit through a caspase independent and dependent pathway

respectively.

Background
Primary or secondary chemoresistance to cytotoxic chem-
otherapy is a frequent phenomenon in patients with solid
or hematological malignant tumors and is a major cause
of death of these patients. The most common cytotoxic

agents used for the treatment of advanced cancers act by
inducing the apoptosis of tumor cells through activation
of the caspase cascade [1-4], although caspase independ-
ent pathways have been also reported [5-7]. The under-
standing of the mechanisms by which tumor cells become
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resistant to apoptosis is therefore an important issue to
develop strategies to counteract tumor cell resistance to
cytotoxic agents.

The acquisition by tumor cells of resistance to the apopto-
sis induced by cytotoxic drugs involves various biological
mechanisms shared by tumors of different histological
types [8-11,3]. These include the amplification of genes
encoding for the enzymatic target of the cytotoxic agent,
e.g. dihydrofolate reductase (DHFR) for methotrexate
(MTX), or the up-regulation of transmembrane molecules
capable to transport the drug outside the cell [9-11]. How-
ever, there is no consistent correlation between the expres-
sion of these proteins and the onset of drug resistance in
vivo, suggesting the presence of additional biological
mechanisms of drug resistance in vivo in cancer patients
[11,12].

Among these, several observations indicate that integrins
may protect tumor cells against the cytotoxic effects of
anticancer agents after interaction with glycoproteins
expressed in the extra cellular matrix or at the surface of
adjacent non tumoral cells [13,14]. In a previous report,
we showed that CD40L, a glycoprotein expressed nor-
mally on activated T lymphocytes, inhibits the cytotoxic
and cytostatic effect of doxorubicin (DOX) by inhibiting
caspase-3 activation in B lymphoma cell lines (NHL)
[15,16]. Similar observations have also been made in
chronic lymphocytic leukemia [17,18]. CD40L interacts
with CD40, a transmembrane molecule of the TNF recep-
tor family [19]. Physiologically, CD40 is expressed on
normal B lymphocytes, interacts with CD40L expressed
on activated T cells [19] and exerts a complex modulation
of B cell apoptosis: CD40 promotes the survival of germi-
nal center B cell, but also induces Fas expression thereby
rendering the cells sensitive to FasL or agonists [19-21]. A
similar situation is observed in neoplastic CD40 express-
ing B lymphoma cells, where CD40L has been reported to
promote either cell survival or tumor regression [21-30].

CD40 is expressed not only on cells of the hematopoietic
system but also on melanoma and on epithelial cells, in
particular breast, lung, or ovarian carcinoma cell lines [31-
37]. As for B lymphocytes, breast carcinoma cell survival
is affected by CD40L in a complex manner: soluble CD40
ligand has been reported to inhibit the growth of breast
carcinoma cell lines while membrane bound CD40L
enhances Fas mediated apoptosis; conversely, stimulation
of CD40+ breast carcinoma cells inhibited paclitaxel-
induced apoptosis [32,35,38,39]. Therefore, CD40 signal-
ing may either protect or enhance the apoptotic signal in
tumor cells. The effect of CD40L on the apoptosis induced
by cytotoxic agents in breast carcinoma was poorly stud-
ied [38] and no mechanistic studies have been reported.

In the present report, we investigated the capacity of
CD40L to modulate apoptosis induced by a variety of
cytotoxic agents with different modes of action in breast
and NHL cell lines. The results indicate that CD40L
induces a multidrug resistance to apoptosis in both breast
cancer cell lines and NHL cell lines, through caspase inde-
pendent and dependent pathways.

Methods
Cell lines and culture conditions

Lymphoma cell lines (DAUDI, RAJI, BJAB, BL36, BL70),
renal carcinoma (CHA, MET, GUI, VER, TUM T, TUM G)
cell lines [40], HTB81 prostatic carcinoma and the
HCT116 colon carcinoma cell lines were grown at 2 × 105

to 106 cells/ml in RPMI 1640 (Life Technologies, Gibco
BRL, Cergy Pontoise, France) for NHL cell lines and carci-
noma, containing 10% fetal calf serum (FCS), 100 U/ml
penicillin, 100 mg/ml streptomycin and 2 mM L-glutamin
(Life Technologies, Gibco BRL, Cergy Pontoise, France).
Breast carcinoma cell lines (T47 D, BT20, MCF-7) were
grown at 105–-2 × 105 cells/ml in DMEM (Life Technolo-
gies, Gibco BRL, Cergy Pontoise, France). The MCF-7 cell
line did not express detectable levels of CD40 and was
therefore used as negative control for CD40/CD40L effect.
CDw32/FcγRII and CD40 ligand (CD40L) transfected Ltk
(-) cell lines (CDw32 L cells and CD40L L cells) were
kindly provided by Schering-Plough (Dardilly, France).
The former being the negative control to the latter, FcγRII
had no counterpart on NHL and BCC cell lines. 95% of
the transfected L cells expressed CD40L as previously
reported [15]. Cytotoxic agents (see under) were added at
the initiation of the culture during 24 hours. After 24
hours, the medium was removed and replaced with the
same culture medium without drugs for 24 additional
hours of culture. Irradiated (75 Gy) transfected L cell lines
were added 24 hours before the initiation of drugs expo-
sure at a ratio of 1/10 L cells/tumor cell. Apoptosis, prolif-
eration test and caspase activation were performed 72
hours after the initiation of tumor cell culture.

Drugs and reagents

Doxorubicin (DOX) were purchased from Pharmacia
(Paris, France), vinblastine (VIN) from Lilly France SA
(Saint-Cloud, France), etoposide (ETO) from Pierre Fabre
(Castre, France), Cisplatin (CDDP) from Rhône-Poulenc-
Rorer Pharma (Antony, France), Paclitaxel (taxol, TAX)
from Bristol-Myers-Squibb (Paris, France), D-erythro-
sphingosine, N-acetyl-C2 ceramide (C2), D-erythro-
sphingosine, N-hexanoyl-C6 ceramide (C6) and the con-
trol C2-dihydroceramide N-acetyldihydrosphingosine (C-
) were purshased from Calbiochem (Meudon, France)
and stock solutions were prepared in ethanol. Cell perme-
able inhibitors of caspase-9, 8 and 3-like activities (Z-
LEHD-FMK: C9, Z-IETD-FMK: C8, Z-DEVD-FMK: C3)
(R&D System GmbH, Abingdon, United Kingdom) were
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added at the initiation of cell culture, 24 hours before
cytotoxic agents. Caspases inhibitors were used by differ-
ent authors [41,42] between 50 and 200 µM depending
on cell type and the observed phenomenon like apopto-
sis, cell cycle arrest and PARP cleavage. In our study we
used inhibitors at 100 µM. The monoclonal anti CD44
antibody was purchased from Immunotech (Marseille,
France).

Determination of apoptosis

According to several publications the effects of drug may
vary depending on cell type and drug concentration [43-
48]. We used drugs at concentrations which induced
apoptosis, i.e. for DOX: 0.5 µg/ml, ETO: 7,5 µg/ml,
CDDP: 7,5 µg/ml, VIN: 50 nM, TAX: 50 nM, C2 and C6
ceramides: 75 µM. NHL cells were removed from 24-wells
microtiter plates using gentle aspiration to avoid the
removal of adherent CD40L L cells. A phenotypic analysis
of the NHL fraction was performed for each experiments
(CD20 and size) [15]. BCC lines were harvested after incu-
bation with 1% trypsine, washed and resuspended 2
hours in medium. Indirect CD44 phycoerythrin labelled
was then performed to distinguish breast carcinoma cell
lines (CD44+) from irradiated CD40L L expressing L cells
(CD44-). The quantification of apoptosis was previously
performed using TUNEL assay (Boehringer Mannheim
Corporation, Indianapolis, USA). Cell lines were fixed
with 1% paraformaldehyde, permeabilised with 0.1% tri-
ton ×100 in 0.1% sodium citrate and washed extensively.
Incubation with terminal deoxynucleotidyl transferase
(TdT) and fluorescein-labeled d-UTP provided visualiza-
tion of DNA strand breaks by flow cytometry on a FACS-
can instrument (Becton Dickinson, Pont de Claix,
France). In each condition, 2000 cells were evaluated for
their content in fluorescein labelled DNA strand breaks.
The intensity of fluorescence was proportional to the
number of fluorescein labelled DNA strand breaks. The
threshold level of fluorescence intensity beyond which
cells were considered to be in apoptosis was 101.

Proliferation assay

Thymidine incorporation in the different cell lines was
tested in the presence of lower, cytostatic, concentrations
of DOX (0.5 µg/mL), ETO (5 µg/ml), CDDP (5 µg/ml),
VIN (30 nM), TAX (30 nM), C2 and C6 ceramides (30–50µM). NHL or BCC cell lines (3.5 104 cells in 200 µL) were
cultured in 96 wells flat-bottomed microtiter plates. After
24 hours of culture with drugs and 24 additional hours of
culture without drugs, cells were pulsed with 1 mCi/well
of [3H]TdR (25 Ci/mmol, Amersham, Les Ulis, France) for
18 hours. [3H]TdR incorporation was measured by tritium
detector using standard liquid scintillation counting tech-
niques on a β counter (Packard, Rungis, France). Of note,
after irradiation, CD40L L cells did not interfere with the

proliferation assay with no significant [3H]TdR incorpora-
tion.

Assay for caspase-3/7 (Yama/CPP32/apopain) activity

Drugs were used at the same concentrations than in apop-
tosis experiments. After 72 h of culture, 106 cells were har-
vested, washed in phosphate-buffered saline (PBS) and
then resuspended in the lysis buffer [5× buffer CSH, triton
0.01%, orthovanadate 1×, protease inhibitor 1×] at 4°C
for 30 min and finally centrifuged at 4°C for 15 min at 13
000 g. Caspase-3/7 activity was measured using caspase-3/
7 cellular activity assay kit plus (Biomol, TEBU, Le Perray-
En-Yvelines, France). OD's measurements were per-
formed at 0, 30, 60, 90, 120, 150, 180 min at 405 nm.
Caspase-3/7 activity was calculated with the following for-
mula:

pmol/min = Slope (OD/min) × conversion factor (µM/
OD) × assay volume (µl) where conversion factor is: 50µM/Average A405 nm (OD of p-nitroanaline).

Western blotting

Total protein extraction was obtained by resuspended
treated cells (in the same conditions of apoptosis induc-
tion), in lysis buffer CSH (Tris 50 mM pH 7.4, Nacl 2.5 M,
EDTA 5 mM, NaF 50 mM, triton 0.1%, orthovanadate 10µM) and protease inhibitors cocktail from SIGMA
(SIGMA-Aldrich, Saint-Quentin Fallavier, France) (PMSF
10 µg/ml, leupeptine 0.2 µg/ml, aprotinine 0.2 µg/ml,
TPCK 2 µg/ml).

Protein extracts (30–50 µg) were heated 5 min at 100°C
in loading buffer (SDS 2%, β mercaptoethanol 100 mM,
Tris pH6.8 50 mM, glycerol 10%, bromophenol blue
0.1%). Denatured samples were run on a 8% acrylamide
gel. After transfer onto PVDF membranes (Millipore,
Saint-Quentin en Yvelines, France), the membranes were
blocked overnight with blocking buffer: I-Block 0.2%
(Tropix, Courtaboeuf, France), PBS 1× and Tween-20
0.1%. Then, the membranes were incubated with the first
antibody anti-Poly (ADP-Ribose)-Polymerase (Roche,
Meylan, France) at 1/1000, washed and incubated with
alkaline phosphatase-conjugated secondary antibody.
The reaction was revealed with chemoluminescence
detection method with CSPD substrate (Roche, Meyland,
France).

Statistics

Statistical analyses were performed using paired Student t
test.
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Results
CD40L induces multidrug resistance to apoptosis in 

carcinoma and lymphoma cell lines

CD40 was found detectable in 2 of the 3 breast carcinoma
cell lines (BCC), in all 6 renal cell carcinoma lines (RCC),
in the HTB81 prostatic carcinoma and the HCT116 colon
carcinoma cell lines as well as in 5 of 5 NHL cell lines
tested (not shown). We investigated whether the apopto-
sis induced by a panel of cytotoxic agents with various
modes of action (doxorubicin (Dox), paclitaxel (TAX),
vinblastin (VIN), etoposide (ETO), cisplatin (CDDP) was
affected by co-culture with CD40L expressing L cells
(CD40L L cells). All 5 drugs tested induced the apoptosis
of the 2 breast carcinoma cell lines (Figure 1). DOX
increased apoptosis of the RCC (86% to 94%), prostatic
(90%) and colon carcinoma cell lines (70%) tested. In the
presence of CD40L L cells, the percentage of cells under-
going apoptosis after exposure to the 5 cytotoxic agents
was significantly reduced (-23% to -62%) in the 2 BCC
lines as compared to a co-culture with L cells expressing
CDw32 (CDw32 L cells) (not shown) or without CD40L
L cells (Figure 1). The only exception was observed with
CDDP for the BT20 cell line. Of note, drugs induced apop-

tosis in CD40 (-) BCC MCF-7 but no protection could be
observed in the presence of CD40L L cells (not shown).
Co-culture with CD40L L cells also reduced the percentage
of cells undergoing apoptosis in 4 of the 6 RCC cell lines
exposed to DOX (-44% to -70%) and, marginally, in the
HCT116 colon carcinoma cell line (-15%) and prostatic
carcinoma cell line HTB-81 (-30%). Similarly, CD40L L
cells significantly reduced the percentage of NHL cells
undergoing apoptosis after treatment with DOX, CDDP
and VIN in all 5 NHL cell lines, and after treatment with
ETO, VIN and TAX in 3 to 4 of the cell lines tested (Table
1).

In NHL cell lines, the cytostatic effect of all 5 drugs was
partially reversed upon co-culture with CD40L L cells at
72 h (Figure 2) but also after 96 h, 168 h and 240 h of cul-
ture (not shown). In contrast, co-culture with CD40L L
cells, but not with CDw32 L cells, also partially reversed
the cytostatic effect of DOX and ETO in the 2 breast carci-
noma cell lines at 72 h, and also after 240 h of culture (not
shown), but did not affect the proliferation of breast car-
cinoma cell lines treated with CDDP, VIN and TAX (Figure
2). Since the drugs tested induced only a limited increase
of the apoptosis in HTB-81 and RCC cell lines, and since
the protective effect of CD40L on these two cell types were
marginal, subsequent experiments were performed on
breast carcinoma and lymphoma cell lines only.

CD40L modulates the cytotoxic and cytostatic effects of 

ceramides on carcinoma and NHL cell lines

Ceramide are important mediators of the apoptosis
induced by cytotoxic agents [49-52]. Incubation with cera-
mides C2 (N-acetyl-C2 ceramide) and C6 (N-hexanoyl-
C6 ceramide) during 24 hours increased the apoptosis of
the 2 breast carcinoma and the 5 NHL cell lines tested,
while the negative control C2 dihydroceramide was inac-
tive (Table 2). Co-culture with irradiated CD40L L cells
reduced the percentage of apoptotic cells induced by cera-
mide exposure (75 µM) in all breast carcinoma (with a
limited effect on T47D exposed to C6) and NHL cell lines
as compared to cells cultured without CD40L L cells
(Table 2). At lower concentrations (50 µM), ceramides
blocked the proliferation of these cell lines: the anti-pro-
liferative effect of C2 and C6 ceramides on the breast car-
cinoma and NHL cell lines tested was reversed by co-
culture with CD40L L cells, except for C2 in BT20 breast
carcinoma cell line and Daudi and BL70 NHL cell lines
(Table 3).

Modulation of caspase-3/7 activation by CD40L

DOX, ETO, VIN and TAX (but not CDDP) induced a mod-
est increase (2 to 4-fold) of caspase-3/7 activity in the 2
breast carcinoma cell lines, while these 5 drugs (except
CDDP in 4 NHL) almost consistently increased (up to 28-
fold) caspase-3/7 activity in the 5 NHL cell lines tested

Inhibition of drugs-induced apoptosis by CD40L L cells in carcinoma cell linesFigure 1
Inhibition of drugs-induced apoptosis by CD40L L 
cells in carcinoma cell lines. Breast carcinoma cell lines 
(T47D, BT20) were pre-incubated 24 hours alone or with 
irradiated (75 Gy) L cells expressing CD40L, then incubated 
with DOX (0.5 µg/ml), ETO (7.5 µg/ml), CDDP (7.5 µg/ml), 
VIN (50 nM) and TAX (50 nM) for 24 hours. The intensity of 
fluorescence, using TUNEL assay, was proportional to the 
number of fluorescein labeled DNA strand breaks. The 
threshold level of fluorescence intensity beyond which cells 
were considered to be in apoptosis was 101. *Apoptosis was 
significantly decreased (Student t test, p < 0.05) upon co-cul-
ture with irradiated CD40L L cells as compared to no L cells 
This experiment is representative of 7 different experiments.
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(Table 4). This increase of caspase-3 activity was com-
pletely inhibited when cell lysates were pre-incubated
with the inhibitor of caspase-3-like activity DEVD-FMK
(not shown). In all 5 NHL cell lines, co-culture with
CD40L L cells, but not with CDw32 L cells, inhibited (-
39% to -89%) caspase-3/7 activity induced by DOX, ETO,
VIN, TAX (Table 4). CD40L L cells significantly inhibited
CDDP-induced caspase-3/7 activity in the BJAB cell line
only (Table 4). In contrast, in breast carcinoma cell lines,
co-culture with CD40L L cells did not significantly reduce
caspase-3/7 activity, and actually consistently increased 2
to 4-fold caspase-3/7 activity as compared to cells treated
with the same agents alone (Table 4).

Modulation of PARP cleavage

The modulation of caspase-3 activity was also investigated
by the detection in Western Blot of caspase-3 products
cleavage of PARP. During apoptosis, activated caspase-3
cleaves PARP (Poly-(ADP-Ribose)-Polymerase) (113 kD)
into 89 kD and 24 kD fragments. In all 5 NHL and 2 BCC
cell lines, drugs induced the appearance or an increase of

the 89 kD fragment (Figure 3A, BJAB and 3B T47D), while
the 113 kD form was dramatically reduced. Upon expo-
sure of BJAB cell line to CD40L L cells, the full length form
(113 kD) remained detectable, at level close to that of
untreated BJAB cells (Figure 3A), although the 89 kD form
remained present in cell lysates; similar observations were
made in the other 4 NHL cell lines (not shown) for 4 of
the 5 cytotoxic agents tested (not CDDP). For the two
breast carcinoma cell lines T47D (Figure 3B), and BT20
(not shown) however, exposure to CD40L L cells did not
significantly affect the balance of the 89 kD and 113 kD
forms of PARP protein,; this observation is consistent with
the absence of modulation of caspase-3 activity in the 2
breast carcinoma cell lines.

Modulation of the apoptosis of the tumor cell lines by 

inhibitors of caspases-like activities

In order to determine whether caspase-3, and upstream
caspases 8 and 9 played a role in drug-induced apoptosis,
caspase-3, 8 and 9-like activities were blocked in drug-
treated breast carcinoma and NHL cell lines using cell per-

Table 1: Multidrug resistance induced by CD40L in lymphoma cell lines

Culture conditions % of apoptotic cell Mean (SE)

LNH

Drug L cells CD40L DAUDI Raji BJAB BL36 BL70

- - 2 (0.3) 2 (0.3) 2 (0.3) 1 (0.2) 6 (0.5)

ETO - 46 (1.1) 16 (0.8) 29 (1) 45 (1.1) 23 (0.9)

ETO + 27 (1)a 17 (0.8) 17 (0.8)a 14 (0.77)a 7 (0.6)a

CDDP - 48 (1.1) 21 (0.9) 32 (1) 62 (1) 78 (0.9)

CDDP + 27 (1)a 9 (0.6)a 16 (0.8)a 25 (1)a 51 (1.1)a

DOX - 29 (1) 15 (0.8) 14 (0.8) 26 (1) 49 (1.1)

DOX + 16 (0.8)a 8 (0.6)a 6 (0.5)a 7 (0.6)a 13 (0.7)a

VIN - 50 (1.1) 32 (1) 28 (1) 55 (1.1) 33 (1)

VIN + 40 (1.1)a 17 (0.8)a 7 (0.6)a 46 (1.1)a 20 (0.9)a

TAX - 37 (1.1) 16 (0.8) 20 (0.9) 32 (1) 27 (1)

TAX + 16 (0.8)a 21 (0.9) 8 (0.6)a 17 (0.8)a 15 (0.8)a

a: P < 0.05 (student's paired t-test) as compared to cells cultured with drug alone

Table 2: Effect of ceramides on lymphoma and breast carcinoma cell lines apoptosis

Culture conditions % of apoptotic cell: Mean (SE)

LNH breast carcinoma

Drug L cells 
CD40L

Daudi Raji BJAB BL36 BL70 T47 D BT20

- - 2 (0.3) 2 (0.3) 2 (0.3) 1 (0.2) 6 (0.5) 0 (0) 6 (0.5)

C2 - 24 (0.9) 64 (1) 13 (0.7) 64 (1) 67 (1) 29 (1) 13 (0.7)

C2 + 10 (0.7)a 17 (0.8)a 4 (0.4)a 42 (1)a 17 (0.8)a 8 (0.6)a 5 (0.5)a

C6 - 80 (0.9) 82 (0.9) 43 (1.1) 85 (0.8) 45 (1.1) 55 (1.1) 20 (0.9)

C6 + 59 (1.1)a 68 (1)a 12 (0.7)a 48 (1.1)a 20 (0.9)a 46 (1.1) 3 (0.4)a

C(-) - 3 (0.4) 7 (0.57) 1 (0.2) 1 (0.2) 4 (0.4) 2 (0.3) 3 (0.3)

a: P < 0.05 (student's paired t-test) as compared with culture with ceramide alone
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CD40L L cells inhibit the cytostatic effects of anticancer drugsFigure 2
CD40L L cells inhibit the cytostatic effects of anticancer drugs. Cells were incubated with (A) ETO (7,5 µg/ml), (B) 
CDDP (7,5 µg/ml), (C) VIN (50 nM), (D) TAX (50 nM), (E) DOX (0.5 µg/mL), in the presence or absence of irradiated CD40L 
L cells or irradiated CDw32 L cells (in panel E), then washed and cultured without drugs but otherwise in the same conditions 
during 24 additional hours before measurement of [3H] TdR incorporation. *: [3H] TdR incorporation was significantly 
increased (Student t test, p < 0.05) upon co-culture with irradiated CD40L L cells as compared to no L cells, or L cells express-
ing CDw32 (E). These results are the mean and SE of triplicate and these results are representative of 4 different experiments.
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CD40L L cells - +    - +    - +    - +    - +    - +    - + CD40L L cells - + - - + - - +  - - +  - - +  - - + - - + -
- - +   - - +   - - +    - - +    - - +    - - +     - - + CDw32 L cells

Table 3: Effect of ceramides on lymphoma and breast carcinoma cell lines proliferation

Culture conditions Mean 3HTdR incorporation (SE)

cells C2 (50 µM) C2 (50 µM) + 
CD40L L cells

C6 (50 µM) C6 (50 µM) + 
CD40L L cells

T47D 25451 (2967) 1573 (111)a 4768 (748)b 2113 (313)a 4782 (108)b

BT20 11005 (777) 916 (128)a 1144 (111) 1979 (184)a 3061 (284)b

DAUDI 38590 (1157) 15687 (473)a 34273 (1847)b 360 (65)a 2218 (906)

RAJI 120043 (3940) 59620 (4987)a 73050 (2168)b 1936 (965)a 6543 (1072)b

BJAB 147778 (25361) 101803 (1821)a 128084 (4793)b 18034 (920)a 47822 (2483)b

BL36 40653 (683) 10787 (3720)a 25756 (1322)b 215 (71)a 6544 (3106)b

BL70 131317 (7241) 42045 (2592)a 81700 (5781)b 568 (257)a 2636 (1103)

a: P < 0.05 (student's paired t-test) as compared to cells cultured without ceramide
b: P < 0.05 (student's paired t-test) as compared to cells cultured with ceramide alone
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able tetrapeptide inhibitors. None of these 3 inhibitors
blocked apoptosis induced by DOX in the T47D breast
carcinoma cell lines (Figure 4A), nor in BT20 (not
shown). Conversely, inhibitors of Caspase-3 and 8-like
activities, but not of caspase-9-like activity, significantly
reduced the percentage of apoptotic cells in BL70 treated
with DOX (Figure 4B), as well as in the 4 other NHL cell
lines (not shown). The role of endogenous ceramide in
apoptosis remains unclear: these mediators may actually
act upstream or downstream of caspases in different
tumor models [53,54]. In the present study, inhibitors of
caspase-3, 8 and 9-like activities protected both NHL and
breast carcinoma cell lines from ceramide induced apop-
tosis (Figure 4), although the magnitude of protection
observed in breast carcinoma cell line was limited in par-
ticular for C2 (Figure 4). Taken together, these results indi-
cate that induction or protection from apoptosis by
cytotoxic agents, ceramide and CD40L occur without con-
sistent modulation of caspase-3, 8 and 9 activity in breast
carcinoma cell lines.

Discussion
CD40L is a member of the TNF family of ligand which is
normally expressed by T lymphocytes and interacts with
CD40 expressed on B cell and antigen presenting cells
[19]. CD40L exerts complex anti- or pro-apoptotic effects
in normal and transformed B lymphocytes, enhancing Fas
mediated apoptosis [20,21] but protecting against apop-
tosis induced by cytotoxic agents [15-17]. CD40 expres-
sion is not limited to cells of the hematopoietic system,
and has been found detectable on a variety of human car-
cinomas, including bladder, breast, ovarian, lung as well
as in melanoma cell lines [31-37]. The purpose of this
study was to investigate the effect of CD40L on the apop-
tosis of CD40-expressing carcinomas and lymphoma cell
lines induced by a variety of cytotoxic agents.

In NHL cell lines, CD40 ligand expressed on adjacent non
tumoral cells was found capable 1) to inhibit the apopto-
sis induced by five different commonly used cytotoxic
agents (DOX, ETO, CDDP, VIN, TAX), 2) to inhibit the
activation of caspase-3/7 induced by DOX, ETO, VIN and
TAX, 3) to inhibit drugs (DOX, ETO, VIN TAX) induced
PARP cleavage by apoptosis protease like YAMA/CPP32/
Apopain/Caspase-3 and 4) to partially reverse the antipro-
liferative effect of the five cytotoxic agents in the 5 NHL
cell lines tested. The inhibition of caspase-3-like and 8-
like activities, but not caspase-9-like activity, by permea-
ble tetrapeptide inhibitors also blocked the apoptosis
induced by doxorubicin in NHL cell lines, suggesting that
the downregulation of caspase-3-like is an essential
molecular mechanism of the protective effect of CD40L.

However, the modulation of caspase-3 is not the sole
mechanism of the protective effect of CD40L in NHL cell
lines. Raji was found to be resistant to reversion of apop-
tosis induction by TAX and ETO despite of modulation of
caspase-3-like activation and PARP cleavage. In addition,
resistance by CD40L to CDDP induced apoptosis was not
associated with caspase-3/7 and PARP cleavage modula-
tion in 4 of the 5 NHL cell lines tested. Apoptosis resist-
ance mechanisms acting downstream of caspase-3
activation have been described in particular in the Raji cell
line [55,56] as well as in ovarian carcinoma cell lines
treated with CDDP [57]. Therefore, protection from drug-
induced apoptosis by CD40L in NHL cells occurs through
a caspase dependent pathway for anthracyclins, etopo-
side, paclitaxel and vinblastin, but through a caspase inde-
pendent pathway for CDDP and for the resistant Raji cell
line, presumably at a convergent point of apoptosis induc-
tion for all cytotoxic agents downstream of caspase-3.

Table 4: Modulation of caspase-3/7 activity by drugs and CD40L

Culture conditions Caspase-3/7 Activity (pmol/min)

Drug L cells 
CD40L

Daudi Raji BJAB BL36 BL70 T47 D BT20

- - 14 10 3.2 15.5 10.3 1.4 2.1

ETO - 45.7 40.8 45.9 35.4 25 2 5.5

ETO + 17.5 a 15.5a 13.4a 19.4a 10a 5.3 10.2

CDDP - 21 34.6 88.6 19.1 19.5 0.9 2.2

CDDP + 23 31.2 13.9a 32.6 24.5 4 1.5

DOX - 34.8 36 10.8 37.9 23.5 3.2 8.5

DOX + 12.3a 8.2a 1.2a 18.8a 5.1a 5.2 11.3

VIN - 16.7 31.7 42.6 11.9 19 1.7 4.3

VIN + 13.8 12.7a 6.5a 14.8 7.2a 4.8 10.1

TAX - 29.7 30.6 39.2 21.2 20.4 2.3 5.4

TAX + 13.1a 9.5a 8.5a 13a 4.5a 5.7 9.8

a: P < 0.05 (student's paired t-test) as compared to cells cultured with drug alone
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In contrast, in CD40 expressing breast carcinoma cell
lines, the protective effect of CD40L was found to be cas-
pase-independent. Co-culture with CD40L L cells was
found capable to protect breast (as well as renal, prostatic
and colon) carcinoma cell lines against DOX induced
apoptosis. Exposure of the 2 breast carcinoma cell lines
tested here to doxorubicin, CDDP, Paclitaxel, Vinblastin
or etoposide did not or only weakly increased caspase-3/
7 activity while caspase-3/7 activity increased up to 28-
fold in NHL cell lines tested after exposure to the same
drugs. Finally, CD40L did not inhibit caspase-3/7 activa-
tion and PARP cleavage induced by any of the 5 cytotoxic

agents in the 2 breast carcinoma cell lines tested. Actually,
exposure to CD40L L cell was found to increase caspase-3/
7 activity in drug-treated breast cancer cells, in marked
contrast with what was observed for NHL cell lines. Con-
sistent with these observations, cell permeable tetrapep-
tide inhibitors of caspase-3, 8 and 9-like activities failed to
inhibit the apoptosis of breast carcinoma cell lines, in
contrast to what is observed in NHL cell lines. These
results indicate 1) that caspase-3 activation is not the sin-
gle pathway required for the induction of apoptosis of
breast cancer cell lines by the anti-cancer drugs tested con-
sidering the PARP cleavage but the weak caspase-3/7 activ-
ity modulation by drugs and 2) that the anti-apoptotic
effect of CD40L on these cell lines do not involve a mod-
ulation of caspase-3/7 activity as it was shown by the
absence of inhibition of caspase-3 activity and PARP
cleavage.

Different mechanisms for CD40L protection against drug-
induced apoptosis and drug anti proliferative effect could
be suggested. Some studies indicated that the antiapop-
totic function of CD40 is mediated by up-regulated
expression of bcl-xL gene, an antiapoptotic member of the
bcl-2 family of proteins and that up-regulation of Bcl-xL
could be a key event in CD40-mediated survival in both
normal tonsillar B cells and the immature B-cell lym-
phoma WEHI-231 cells [58-60]. More recently, Lee et al
provided a crucial link in CD40-mediated antiapoptosis
by linking the activation of the NFKB-signalling pathway
to the up-regulation of Bcl-2 family members [61]. The
cytoplasmic domains of TNF receptor family like CD40
do not encode any enzymatic activity but some proteins,
identified by the generic name TRAF, physically interact
with them, providing some clues to the mechanisms of
signal transduction [62]. The CD40 cytoplasmic domain
has been found to interact with TRAF2, TRAF3, TRAF5 and
TRAF6 but TRAF2 is the best characterized of the TRAF
proteins in term of signaling function. TRAF2 activates
NFκB by means of a synergistic interaction with a novel
protein called TANK [63]. It has been suggested that
TRAF2 would have to be released from CD40 in order for
it to interact with TANK and activate NFκ B. Study of func-
tional consequences, like NFkB activation, of preventing
CD40-TRAF2 dissociation with the blocking antibody anti
CD40L would provided information on mechanisms
induced by CD40-TRAF2 interaction. Finally, the protec-
tive role of CD40L against drug-induced apoptosis may
pass by the modulation of the cell cycle and the role of
p53 family. Previous studies showed that CD40 can
repress drug-induced apoptosis by, among others, B lym-
phoma cell cycle progression [64]. Teoh et al showed,
depending on multiple myeloma cells p53 status, that
CD40 induced increase G1/S transition and cell prolifera-
tion or growth arrest with sub G1 phase cells and apopto-

Modulation of PARP cleavage by drugs and CD40L express-ing L cells in NHL and BCC carcinoma cell linesFigure 3
Modulation of PARP cleavage by drugs and CD40L 
expressing L cells in NHL and BCC carcinoma cell 
lines. BJAB cells (Panel A) and T47 D (Panel B) were incu-
bated alone or with irradiated (75 Gy) L cells expressing 
CD40L then incubated with DOX (0.5 µg/ml), ETO (7.5 µg/
ml), CDDP (7.5 µg/ml), VIN (50 nM) and TAX (50 nM) for 24 
hours and finally washed and cultured without drugs with or 
without irradiated L cells expressing CD40L during 24 addi-
tional hours. Western blot were performed on 50 µg of total 
cell protein with PARP antibody. Data are representative of 3 
experiments.
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sis [65]. So many pathways remain to be explore in order
to determine CD40/CD40L cellular mechanism.

Taken together, these results indicate that the protective
effect of CD40L against cytotoxic agents involves caspase-
dependent and independent pathways in NHL, and cas-
pase independent pathways in breast carcinoma cells
lines. Of note, similar observations were obtained in the
colon carcinoma HCT116 cell line treated with doxoru-
bicin, with no significant modulation of caspase-3/7
activity nor reversal of the cytostatic effect of doxorubicin

(not shown). These results strongly suggest that the anti-
apoptotic effect of CD40L involves different molecular
mechanisms in the lymphoma and carcinoma cell lines
tested in this study.

It has been reported that CD40L induces direct cytostatic
effects on breast carcinoma cell lines [35,39]. The lack of
significant impact of CD40L on tritiated thymidine incor-
poration in the 2 breast carcinoma cell lines tested could
hence have resulted from a combined "direct" inhibitory
effect of CD40L on BCC proliferation and a reversal of
drug-induced cytostatic effect by CD40L. This hypothesis
is however unlikely since no direct anti-proliferative effect
of CD40L expressing L cells was observed in the two breast
carcinoma cell lines tested (not shown). The discrepancy
between the present and previously published results [35]
regarding the effect of CD40L on breast carcinoma cell
proliferation could result either from a variability of
response to CD40L in different carcinoma cell lines or
alternatively to a different biological activity of membrane
bound vs soluble CD40L. Indeed, soluble and membrane
bound CD40L, as well as CD40 agonists, have been
reported to exert opposite biological activities on lym-
phoma cell line proliferation and survival in previous
studies [15-17,23,27,28]. Tong et al reported apoptosis
induction by CD40L in BCC in the absence of cytotoxic
drugs, but moreover they used a recombinant molecule
and not membrane bound CD40L [39]. On the other
hand, in agreement with our current finding Stumm et al
have shown that CD40 stimulation in Breast carcinoma
inhibited drug-induced apoptosis [38].

Ceramides have been reported to act as second messen-
gers for the apoptosis induced by DNA damaging agents
in some tumor cell lines [49-52]. A rapid intracellular
ceramide increase has been observed after exposure to γ
radiation or exposure to DNA damaging agents, resulting
either from the activation of a sphingomyelinase or cera-
mide synthase, or from caspase-8 activation in different
tumor models [51]. To determine whether the protective
signaI delivered by CD40L acts upstream or downstream
of ceramide production, the protective effect of CD40L on
the apoptosis induced by ceramides in BCC and NHL cell
lines were compared. While cell permeable C2 and C6
ceramides induced apoptosis and blocked thymidine
incorporation in the 5 NHL and 2 breast carcinoma cell
lines tested, co-culture in the presence of CD40L L cells
blocked the apoptotic signal induced by C2 and C6 cera-
mides in NHL and breast carcinoma cell lines. However,
the molecular mechanisms involved in the induction of
apoptosis by ceramides and cytotoxic agents were found
to be different in breast carcinoma. While inhibitors of
caspase-3 and 8-like activities partially prevented the
apoptosis induced both by ceramide or doxorubicin in
NHL cell lines, these inhibitors were active only for cera-

Modulation of drug induced apoptosis by inhibitors of cas-pase like activitiesFigure 4
Modulation of drug induced apoptosis by inhibitors of 
caspase like activities. T47 D (Panel A) and BL70 cells 
(Panel B) were incubated alone; or 24 hours in the presence 
of C2 or C6 ceramides (75 µM) or DOX (1 µg/mL); or pre-
incubated 24 hours with cell permeable inhibitors of caspase-
9-like activity (z-LEHD) or caspase-8-like activity (z-IETD) or 
caspase-3-like activity (z-DEVD) and then 24 hours with 
drugs (C2 or C6 or DOX). Cells were finally tested for 
apoptosis using the TUNEL assay as indicated in Materials 
and Methods. *Apoptosis was significantly decreased (Stu-
dent t test, p < 0.05) upon co-culture with caspases inhibi-
tors as compared to no caspases inhibitors.
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mide-induced apoptosis (and not for drug-induced apop-
tosis) in breast carcinoma cell lines. Since ceramide
production in response to cytotoxic agents was not tested
in the present study, it is not possible to establish whether
CD40L affects ceramide increase in response to cytotoxic
agents. However, ceramide and doxorubicin-induced
apoptosis were modulated by different inhibitors in
breast carcinoma suggesting that ceramide is at least not
an exclusive mediator of doxorubicin induced apoptosis
in this breast carcinoma cell line.

CD40L therefore may block the apoptosis of breast carci-
noma cell lines independently of the modulation of cas-
pase activities in these different models. Further studies
on bcl-2 family protein like Bclxl/Bax, but also cell cycle,
p53 and TRAF-2 would provide more information on
mechanism of CD40L induced drug resistance.

Conclusion
This study show that CD40L expressed on adjacent non
tumoral cells induce a multidrug resistance to apoptosis
in breast carcinoma and NHL cell lines, through both cas-
pase dependent and independent pathways in NHL cell
lines, and through a caspase independent pathway in
breast carcinoma cell lines.
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