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Abstract

Background

Longitudinal studies with ordinal repeated outcomes are now widespread in
epidemiology and clinical research. The statistical analysis of these studies combines
two difficulties: the choice of the best ordinal model and taking into account
correlations for within-subject responses.

Methods

Random-effect models are of particular value in this context and we propose here a
fitting strategy. The various ordinal models extended to the case of repeated responses
are detailed. We explain how the choice of model constrains the random effect
structure. Model selection criteria and goodness-of-fit measures are also presented.
These issues are dealt with by the mean of the example of self-reported disability in
older women assessed annually over a period of seven years.

Results

The proportionality of the odds ratios was validated for the covariables "age" and "gait
speed". In contrast the impact of the covariable "pain" differs according to the levels of
disability. The restricted partial proportional odds model was found to have a goodness
of fit equivalent to the full generalized ordered logit model while the stereotype model
appeared to give poorer fit.

Conclusions

The random-effects models presented in this paper allow taking into account the ordinal
nature of the outcome in longitudinal studies. Furthermore the impact of the risk factors
can be modeled according to the response levels. This approach can be useful for a

better understanding of complex processes of evolution.
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Longitudinal studies. Random-effects models. Ordinal response. Disability evaluation

Résume

Position du probleme

Les ¢tudes longitudinales avec des réponses ordinales répétées sont maintenant
fréquentes en épidémiologie et recherche clinique. L'analyse statistique de ces €tudes
comporte deux écueils : le choix du meilleur modéle ordinal et la prise en compte des

corrélations intra-sujets des réponses.

Méthodes

Les modeéles a effets aléatoires sont particulieérement bien adaptés dans ce contexte et
nous proposons dans cet article une stratégie de modélisation. Les différents modeles
ordinaux étendus au cas des réponses répétées sont détaillés. Nous expliquons comment
le choix du modele impose des contraintes sur la structure des effets aléatoires. Nous
présentons aussi des critéres de sélection et des mesures d'adéquation des modeles aux
données.

Ces questions sont illustrées par un exemple d'étude de l'incapacité mesurées chaque

année, chez des femmes agées, sur une période de sept ans.

Resultats

La proportionnalité des odds ratios a €té validée pour les covariables "age" et "vitesse
de marche". Par contre l'impact de la covariable "douleur" est différent selon le niveau
d'incapacité. L'adéquation aux données du modele restreint & odds partiellement
proportionnels était comparable a celle du modéle logistique ordonné complet tandis

que celle du modéle stéréotype était moins bonne.
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Conclusion

Les modeles a effets aléatoires présentés dans cet article permettent d'analyser les
études longitudinales en prenant en compte le caractere ordinal de la réponse. De plus,
I'impact des facteurs de risque peut étre modélis¢ selon les niveaux de la variable
réponse. Cette approche peut étre utile pour mieux comprendre les profils d'évolution

complexes.

Etudes longitudinales. Modeéles a effets aléatoires. Réponse ordinale. Evaluation de
l'incapacité.
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Background

In epidemiology and clinical research, dimensions such as quality of life, pain, fatigue,
depression, cognitive impairment, mood and physical disability are increasingly studied
as outcomes of interest. In elderly people, for example, measurements of functional
limitation are of key importance. In recent years, a large number of scales have been
developed for the evaluation of these dimensions, most of them being ordinal indicators
[1-4]. Moreover, the study of the succession of stages of disability, together with
analyses of the risk factors for future deterioration is a major concern in gerontology.
For this explanatory research, cross-sectional studies are inappropriate due to biases
such as selective removal or differences in the proportions of impaired individuals
between age groups, which may also be confounded with changes over generations [5].
Therefore, studies on risk factors for disability among elderly people require statistical
tools able to take into account at the same time the ordinal nature of the outcome
variable, the correlation between repeated observations for a subject and the time-
dependence of some covariables (the covariables may vary over time for a subject).
These issues may be addressed by means of random-effect models. However, few
studies have used this type of model for the analysis of ordinal responses and, indeed,

their application raises several problems.

In this paper, we describe a strategy for selecting and fitting multivariate random-effect
models to longitudinal ordinal responses. We firstly present the models and their
constraints coming from both the random-effect and the ordinal aspects of the models.
Then, we provide tools for comparing their goodness of fit. Finally, this strategy is
applied and the models are compared in an epidemiological study of changes over time

of a disability indicator among a cohort of elderly women.
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Methods

In longitudinal studies, each subject is assessed at different time points and these intra-
individual responses are correlated. These correlations between individual responses
must be accounted for by appropriate analysis methods [6] such as the generalized
linear mixed model (GLMM), also known as the multilevel model or the conditional
model [7]. The use of random effects in linear models for normal responses is well
established. By contrast, random effects have only recently been incorporated into

models for categorical data, due to complexities of implementation.

A basic characteristic of these models is the introduction of random subject effects into
the linear predictor, which has led to random-effects models being described as
"subject-specified models" [8]. The random part of the linear covariable combination
describes and explains the structure of the longitudinal correlation and indicates the

magnitude of between-individual heterogeneity.

Let Y}, denote an outcome corresponding to the jth response (i.e. the response at time j)
of the 7th subject (=1 to N). Let Xj; be a design matrix of time dependent covariates and
Z;; a submatrix of Xj;. Let U; denote the vector of random effect values for the subject 1.
Conditional on U;, a GLMM resembles an ordinary GLM. Let £4=E(Y;/U;) denote the
mean of the conditional distribution of ¥; given U;. The linear predictor for a GLMM

therefore takes the form:

g(uij) = XUB + Z;jUi

where g(.) is a link function and U; is assumed to be independent of the covariates and

normally distributed with mean zero and unknown variance.
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For the fixed parameters [3, estimates are obtained conditionally on random effects
distribution. The likelihood function has no closed-form solution and various estimation
procedures have been proposed to overcome this difficulty. The most attractive of these
procedures directly maximizes an approximate likelihood obtained by numerical
integration and is implemented for instance, in the SAS NLMIXED procedure. The
likelihood is the integral, over the unobserved random effects, of the joint distribution of
the data and the random effects. With non-linear models, computational intensive
integration methods, such as the Gauss-Hermite quadrature [9], are required to evaluate
this likelihood. Having approximated the likelihood, standard maximization methods,

such as the Newton-Raphson method, are used to obtain the estimates.

Several models have been proposed for the analysis of ordinal responses in the case of
non correlated data [10, 11]. These models can be extended to the case of repeated
responses. However, the choice of the model imposes constraints on the random effect
structure. Furthermore, in practice, it is difficult to introduce more than a few random
effects with this estimation procedure. We present here several types of ordinal models

with only a random intercept.

The proportional odds mixed models

Let Y;; now denote an ordinal outcome with K categories.

The cumulative logit model was the first model proposed for ordinal responses. The
ordinal nature of the response was taken into account by considering the cumulative

probabilities P(Y;; = ¢), ordered as follows 1=P(¥Y; 2 0) 2 P(Y;21)= ... P(Y;2¢) 2

Py K).

The model can be represented as follows:

Page 7 of 27



1duasnuew Joyine eH

=
(%]
@D
=
J
o
o
@
~
~
(o2}
[EY
o
<
(0]
!
0.
o
=
[EEY

(P(Yi, 2c| X, u,)

=a,+X;B+u, (D
P(K‘j <C|Xij:ui !

where #; is the random effect specific to subject 7 and @ is the intercept for category c.
The vector of the fixed parameters () represents the log-odds ratios of the grouped
categories superior to the cut-off (¢) compared to the categories inferior to ¢. In this
model, the random effect (#;) and the fixed effects () are independent of the cut-off (c).
The assumption that B is independent of the response level implies that the log-odds
ratio for a given covariable is the same for all levels of the response. This led

McCullagh to refer to this model as the "proportional odds model" [12].

The consideration of cumulative properties confers several useful properties to the
model: (1) The proportional odds model is invariant if the codes for the response Y are
reversed, resulting only in a change in the sign of the regression parameters, (2) the
proportional odds model is invariant if the categories of the ordinal response are
collapsed [10]. The parameter vector, 3, remains unchanged if categories are combined,

only the intercepts, a, are affected.

The proportional odds model is often presented as designed for ordinal response
categories monotonically related to an underlying continuous latent variable n. The
relationship between Y and n is such that the parameters a. are the cut-off points on the
continuum N and that ¥j; equals c if 7, lies between a, and a..;. However, as pointed

out by McCullagh [13], the existence of ) is usually unverifiable in practice.

However, the use of a random effect, u,, independent of response category is based on
the notion that a unique unknown continuous phenomenon underlies the ordinal
response. It is possible to consider a model including differential random effects, u;., by

category of Y. However, estimation is more complicated in this extended model because
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constraints must be added to ensure that the intercept ordering is not violated. For a
given response category, ¢, the intercept is then: a,+u,. and therefore it is necessary that:

a;tu; 2ar)tu;=2 .. 20tk

The proportional odds assumption ( independent of the response level ¢) may be too
strict and should, in any case, be tested. For this purpose the proportional odds model
may be compared to more general ordinal models that permit the effects, B, to vary
according to the categories of Y. The most general model of this type is called the

generalized ordered logit model and can be expressed as follows:

P(K‘j Zc|Xij7ui)
P(Yij <C|Xij7ui)

j = ac +Xich +ui (2)
In the proportional odds model (1), the ordered nature of the response is expressed

exclusively by the mean of the ordered intercepts, a.. In contrast, in model (2), the

covariates are involved in this ordering [14].

The hierarchy of cumulative probabilities implies the same ordering for the logits: logit(
Py, =21)= .. logit(P(Y; = c)) = ...logit(P(Yy; = K-1)). Thus, the linear predictors
must also be identically ordered. For a single covariable, and as the random effect is
thought to be independent of the response level, this relationship becomes: a;+ [x
>a,+ fox= .= ax;+ frax. These K-1 regression lines are not necessarily parallel and
they may cross for some values of x, resulting in violation of the previous hierarchy,
although this crossing of regression lines generally occurs outside the range of observed
data. It may nonetheless be problematic if extrapolation of the model beyond the range
of observed covariables is required, and it is necessary to check the order of the

estimated linear predictors.
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If only some of the covariables are consistent with the assumption of proportional log-
odds, the unconstrained partial proportional odds models can be used [15]. In this model

only a sub-vector of B depends on the categories of Y.

This random effect proportional odds model was already used in various applications:
meta-analysis [16], intervention randomized trials in clustered individuals [17] and

longitudinal observational studies [18].
The continuation ratio model

When the cumulative probabilities of being in one of the categories greater or equal to ¢
in the proportional odds model is replaced by the probability of being in category c, this
leads to the (backward) continuation ratio model [19]. The response, Y, represents a
disease status given by ordered categories with higher values corresponding to more

severe disease states. This model can be written as follows:

P, =c| Xy,u,)
P(K‘j <C|Xij7ui)

]:ac +X‘ijﬁ+ui

This model is recommended when the underlying outcome is irreversible, in the sense
that upon attaining level ¢ a subject's response cannot revert to a lower level. In contrast
to the proportional odds model, the continuation ratio model does not have the useful

property of invariance under reversal or collapse of categories.

The forward continuation ratio model can also be defined by the probability of being in
category ¢ conditionally of being in category ¢ or greater. It is then analogous to the

discrete-time version of the proportional hazard model.

As with the proportional odds model several authors introduced more flexibility
defining, for each covariable, regression parameters specific to the response category
[20, 21].
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The generalization with a random effect was used by Dos Santos et al [22] to investigate
in a sample of women with breast cancer, the effect of stage (size of the tumor), age and
primary treatment on the condition subsequent to surgery (death, progression, disease
static, partial response, complete response, no disease) evaluated repeatedly, at one or

more follow-ups, until death.
The adjacent category model

This model considers the ratio of the probability of being in one of the categories and

the probability of being in the adjacent category. The form of the model is:

PX.=cl|X,.u, .
jog| PUAXt) | g
P =c-11Xy,u,

In this form the regression parameters do not depend on the level of the response. But
like for the models described above, the regression coefficients can vary with c,

meaning that for a given covariable there would be (K-7) parameters [3..

This model is designed for situations in which the subject must 'pass through' one

category to reach the next.
The stereotype mixed model

In cases in which the ordinal categories of Y cannot be considered as a discrete version
of a continuous variable, an extension of the nominal logistic model [23] also called
baseline-category model that accounts for the ordering of the response categories can be

used. This model is called the stereotype model [24].
P, =e X,
P(Yij =0] X, U,
with 0<@<@<..<@g=1

)}:ac+¢cx;jﬁ+ui 3)

An important distinction between the stereotype model and the models described above
is that the stereotype model uses comparisons to a reference category.

Page 11 of 27



1duasnuew Joyine eH

=
(%]
@D
=
J
o
o
@
~
~
(o2}
[EY
o
<
(0]
!
0.
o
=
[EEY

The constraints on the ¢ completely ensure the response level ordering. The random
effects (u#;) and the fixed effects () are then independent of the response level. It is
assumed that a single linear combination of covariables is adequate to distinguish
between all outcome levels. The distance between the outcome levels in terms of linear
predictor is given by the ¢& parameters. More complex stereotype models have been
recently introduced using between 2 and (K-2) linear combinations [24]. If two linear

combinations are used the model is written:

(P(Y;j =c| Xz’jjui

=a,+gX,;B' + @ X’ +u,
P(Y"]':O|Xifﬂui)j ‘ (dc “B 40“2 lJB i

The nominal logistic model is equivalent to the most flexible stereotype model with (K-
1) linear combinations. The stereotype models with less than (K-1) linear combinations
may then be compared to the nominal logistic model to see if their simplifying

constraints are valid.
Model selection and goodness of fit

Model selection includes the choice of the type of model and variable selection within a
model type. In this framework, the parameters estimating method with numerical
integration has the advantage of being based on likelihood statistics. Thus, models can
be ordered according to likelihood-based measures, such as Akaike's information
criterion or Schwarz's Bayesian criterion. Moreover, for variable selection, nested

models can be compared with the likelihood ratio test.

However, as in non-longitudinal cases, a more general way of evaluating goodness-of-
fit is to calculate the degree to which predicted values agree with observed values. In the
generalized linear mixed model, predicted values are calculated from parameter

estimates ( ,3) and empirical Bayes estimates of random effects (#;) [25]. These predicted

values can be obtained directly by means of the PREDICT instruction of the SAS
Page 12 of 27
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NLMIXED procedure. The concordance between the observed (yz-j) and estimated
(JA’z'j)ordinal responses can be assessed by one of the standard measures of ordinal
association: gamma, Kendall's tau-b, for example [26]. However, Vonesh suggested that
the coefficient of determination and the concordance correlation coefficient could be

used [27]. The first one of these coefficients, defined as
A )2 _\2
R=1=3 50 =0 ) 1Z 2 -7)
i J 1 J

can be interpreted as the proportion of total variation of Y that is accounted for by the
fitted model (¥ being the total mean over the subjects and the repetitions of the V; ). The

second coefficient is expressed as follows:
X300, -5)
1- —— — —
Y353 + X2 (5, -5) +N(7-3)
i J i J

This coefficient measures how close the points on a scatter plot of y; versus J;, are to

c

the identity line. Its possible values extend from -1 to 1, with a perfect fit corresponding

to a value of one and a lack of fit corresponding to values < 0.

The main advantage is that these criteria are independent of the estimating procedure,
making it possible to compare non-nested models or models with different covariance

structure or models estimated by the means of non-likelihood based methods.

Application to the EPIDOS study

The French EPIDOS study is a prospective multicenter study of risk factors for hip
fractures in 7575 women aged 75 years or older, recruited in 1992-1993 by mailing,
based on large population-based listings including electoral rolls [28]. These women
were asked to complete an annual postal questionnaire, investigating hospitalization,
new health events, changes in weight, type of housing, ability to go outside, activities of

daily life (ADL), instrumental activities of daily life (IADL), medication used, and
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subjective health evaluation. The present analysis was carried out on the data from
Montpellier (Southern France), one of the five participating centers, where 1548 women

were followed for 7 years.

Some annual questionnaires were missing, mainly due to illness or to family events,

such as the death of the spouse. These women sent in their responses late.

We investigated the risk factors related to changes in IADL score. This score is
designed to evaluate independent living and deals with the following activities:
performing light or heavy housework, laundry, shopping for groceries or personal items,
preparing meals, using a telephone, taking public transport, managing money and taking
medication without assistance. This indicator of disability varies from zero to 8
according to the number of activities that the woman is not capable of performing on
her own. To ensure that each category contained sufficient numbers, we collapsed the
responses as follows: 0, 1-2, 3-4, 5-6, 7-8. The final annual response therefore had five

ordered categories and varied from O (not disabled) to 4 (almost entirely dependent).

The analysis was restricted to the women free of disability at inclusion and without
missing values for the baseline covariables (929 women). We examined only several
didactic risk factors to illustrate the use of the mixed ordinal logistic models. We do not
present an exhaustive analysis of all covariables potentially involved in the disability

process.

Moreover, since the disability process is reversible and may skip a value of the IADL
score, the continuation ratio and adjacent category models were not appropriate for the

Epidos data. Thus, these models were not used in the analysis.
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Model fitting with SAS NLMIXED

The SAS NLMIXED procedure is very flexible, enabling the user to code the likelihood
directly. This makes it possible to program all the models described above, as described

in this section.

As the response reflects an underlying continuous phenomenon - the decline in the
women's general state of health - we used the proportional odds model. As already
explained, we began with the generalized ordered logit model (2). In the case of only

two covariables (age and time) the SAS code is:

1 titlel ' Ceneralized ordered |ogit nodel'

2 title2 ' TIME ACE

3 proc nlmxed data=tabl e gmax=5000

4 bounds i 1>0, i2>0, i3>0 ;

5 parns betall=0.56 betal2=0.61 betal3=0.64 betald=0.64
6 bet a0=- 10 bet a24=0. 3 bet a23=0. 3 bet a22=0. 3 beta21=0. 3 ;

7 eta4 = beta0 + betald*tinme + beta24*age+ u ;

8 eta3 = beta0 + i1l + betal3*tinme + beta23*age + u

9 eta2 = beta0 + i1l + i2 + betal2*tine + beta22*age + u ;

10 etal = beta0 + i1l +i2 + i3 + betall*tine + beta2l*age + u
11 if (iadl=4) then z=1/(1+exp(-etad))

12 else if (iadl=3) then z= 1/(1+exp(-eta3d)) - 1/(l+exp(-etad))
13 else if (iadl=2) then z= 1/(1l+exp(-eta2)) - 1/(l+exp(-etal))
14 else if (iadl=1) then z= 1/(1l+exp(-etal)) - 1/(l+exp(-eta2))
15 else if (iadl=0) then z= 1 - 1/(1l+exp(-etal));

16 'l =l og(z)
17 nodel iadl ~ general (11);
18 random u ~ normal (0, su**2) subj ect =i dent;

19 estimate '"int4' betaO ;

20 estimate 'int3' betalO+il ;

21 estimate 'int2' betaO+i 1+i 2 ;

22 estimate '"intl' betaO+i 1+i 2+i 3 ;

23 predict etal out=etal;
24 predict eta2 out=eta2;
25 predict eta3 out=eta3;

26 predict eta4 out=eta4;
27 run;

In this code, "iadl" is the outcome variable (with values from O to 4) and "ident" is the

variable that indicates the subject ID number (line 18). Lines 7 to 18 define the model
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according to equation (2). If there are more than two variables, etal to eta4 should be

modified and more parameters, beta(i, j), should be used.

We included time since baseline as a continuous variable. We also included the
following fixed effects, recorded at inclusion: age at entry (in years exceeding 74), gait
speed (in m/s, for the completion of 6 m at a normal pace) and pain (frequent pain in the
lower back, hip, knee, ankle or leg). All these covariables except "pain" were

considered to be quantitative.

The NLMIXED procedure converged and provided estimations only when the initial
parameters, given in the PARMS instruction (line 5), were close to the final solution.
We then calculated successive models, beginning with a simple model that includes
only a random intercept, introducing the covariables one by one and using the
previously estimated parameters as the starting point for the next estimation at each

step.

Results

Model selection

The parameters of the full generalized ordered logit model are provided in the first part
of Table 1. We reduced the number of parameters by comparing this model with
successive restricted models assuming proportional odds ratios for some covariables.
We considered each covariable separately: if the confidence interval of one parameter
included the parameter of the adjacent category we estimated the model in which the
two parameters had been replaced by a single one. This new restricted model was
chosen if it did not differ significantly from the initial full model according to the
likelihood ratio. For instance, the four parameters of the variable "gait speed" can be

replaced by a single parameter (see Table 1). In this case, lines 7 to 10 of the SAS code,
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which define the linear predictors, are modified and a single parameter is used to
replace the corresponding betas (beta(i, 1), beta(i, 2), beta(i, 3), beta(i, 4)). The final
comparisons are shown in Table 2. Comparing the partial proportional odds model with
the generalized ordered logit model, the p-value associated with the likelihood ratio was
0.06 (chi2=16.5 with 9 df), indicating that the two models have an equivalent goodness-
of-fit. For the covariables time since inclusion and pain, proportionality could be
validated for some of the response levels only. For instance the log-odds ratio
associated with pain was 0.78 for the first two levels and 0.34 for the next two levels.
Pain was found to have a pronounced effect at the beginning of the disability process
which became non significant for transitions to more serious states. Time since
inclusion was grouped as follows: 4, 3+2, 1. Another solution, equivalent in goodness-
of-fit performance, would be: 4+3, 2, 1. But level 2 cannot be grouped with level 4. The
effect of time seems to be more marked on the middle categories of disability (2, 3). In
contrast, for the covariables "gait speed", and "age", the model was reduced to only one

parameter, indicating that the odds are entirely proportional.

The hierarchy of linear predictor estimates was checked for all subjects and all time
points. The linear predictors are given by the PREDICT instruction in the SAS program
and we checked if the inequality etal > eta2 > eta3 > eta4 was verified for all the
observations. None presented a reversed order, and the final model was therefore

considered valid in the range of the observed values for the covariables.

The generalized ordered logit model and the partial proportional odds model had very
similar coefficients of determination (0.58 and 0.57 respectively) and concordance
correlation coefficients (0.77 and 0.765). We therefore retained the partial proportional

logit model, in accordance with the principle of parsimony.
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The goodness-of-fit statistics for the strict proportional odds model are also given in
table 2. In comparison with the generalized ordered logit model and the partial
proportional odds model, the p values associated with the likelihood ratio were
p<0.0001 indicating that the proportional odds model was less efficient than the two

others. The hypothesis of proportionality for all the covariables was then rejected.

We also fitted a random-effect stereotype model (3) including the same covariables
(SAS code given in the appendix). The parameter estimates are given in the last column
of Table 1. The reference category was an IADL score equal to zero. In this model each
covariable is characterized by only one parameter. The log-odds ratio for a response
category in comparison with the reference is obtained by multiplying the estimated
parameter by the corresponding estimate of @ For example the log-odds corresponding
to a disability level of 3 for the covariable "pain" is equal to 0.705 (0.75*0.94). This
model appeared to give the poorest fit: the -2Log Likelihood was 10243, whereas that
for the partial proportional odds model was 9790, the coefficient of determination was
0.32 and the concordance correlation coefticient was 0.57 (Table 2). In our example,

this model is also less efficient (Table 2) than the proportional odds model.

Goodness of fit

The concordance correlation coefficients reported above were calculated taking into
account both the estimates of the fixed parameters and the empirical Bayes estimates of
the random effects. They can be seen as conditional model concordance correlation
coefficients [27]. The average model concordance correlation coefficient can also be
calculated, based entirely on the non-random part of the model. For the final partial
proportional odds model, this average model concordance correlation coefficient was
0.37. This coefficient differed from the corresponding conditional model concordance

correlation coefficient (equal to 0.77), indicating that the fixed covariables explained
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only a part of the response variation. A high level of between-individual heterogeneity
is modeled by the random intercept. The probability of being at a given level of
disability is therefore partially due to the uncharacterized "frailty" of the woman

concerned.

Discussion

The mixed models presented in this paper are interesting in two ways.

Firstly, they allow to analyze ordinal response and to evaluate the influence of each risk
factor according to the levels of the response. Compared to the methods that
dichotomize the response using an arbitrary cut-off and model it with a simple logistic
regression our models are more worthwhile in the sense that the optimal cut-off may

change with the risk factors.

Secondly, the random-effect models for non-gaussian responses are very powerful tools
for the explanation of longitudinal processes. Several statistical packages (STATA,
SAS) have recently implemented algorithms for these methods. The numerical
procedure, which directly approximates the likelihood, does not suffer the drawbacks of
previously developed methods. For example, the penalized quasi-likelihood approach
[29, 30] has been shown to provide highly biased estimates of mixed-effects parameters
with binary responses especially when the number of observations by cluster is small
[31-33]. But, it is difficult to introduce a complex covariance structure as the
computational time greatly increases with the number of random effects. This limitation
is likely to become less severe in the future as computer capacity is continually
increasing. In our example, the partial proportional logit model presented in Table 1
took 56 minutes on a P4, 1.4GHz PC, and only 12 minutes on a P4, 2.5GHz PC.

However the NLMIXED procedure may fail to integrate the likelihood or give non-
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stationary estimations. This non-optimal estimation can be diagnosed by checking the
gradient (vector of first derivative) of the negative log likelihood function for each
parameter. These gradients are systematically provided by SAS in the results. If any one
of them is not close to zero, then the solution cannot be considered to be valid. These

problems of convergence were not encountered with our set of data.

Other more flexible methods allowing multiple levels of clustering, such as Markov
chain Monte Carlo methods [34], can be used but are not based on likelihood statistics
and model comparison is less straightforward. However, they can be used to cross-
validate the estimations generated by procedures with numerical integration, such as

NLMIXED.

Little work has been done on the model checking and the model diagnosis for GLMM:s.
This is nevertheless an important area in practice and we have presented here a simple
method for the comparison of ordinal random-effect models and assessment of their

goodness of fit.

Efforts are still required to improve the numerical approximations of likelihood in

random-effect modeling, but these methods appear promising.

Conclusions

The models presented in this paper permit the analysis of longitudinal studies that are of
particular interest in epidemiology taking into account the ordinal nature of the
outcome. Furthermore the impact of the risk factors can be modeled according to the
response levels. This presents an important perspective in better explaining complex

processes of evolution.
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Table I. - Parameter estimates of three random-effect models for ordinal responses

Generalized ordered logit Partial proportional odds Stereotype model
model model

i Parameter  SE pvalue Parameter SE pvalue Parameter SE p value
% Intercept
S 4 -5.19 0.74 <0.0001 -5.99 0.56 <0.0001 -4.05 0.55 <0.0001
§ 3 -4.82 0.63 <0.0001 -5.00 0.52 <0.0001 -3.76 0.53 <0.0001
g 2 -3.66 0.56 <0.0001 -3.58 0.51 <0.0001 -2.62 0.46 <0.0001
= 1 -0.73 0.52 0.16 -0.63 0.51 0.22 -1.21 0.31 <0.0001
2' Time since
3 inclusion (years)
S 4 0.57 0.05 <0.0001 0.59 0.05 <0.0001 0.79 0.04 <0.0001
% 3 0.61 0.04 <0.0001 0.64 0.03 <0.0001
g 2 0.65 0.03 <0.0001 " " "
g<g 1 0.52 0.02 <0.0001 0.53 0.02 <0.0001
é' Age (in years
= minus 74)

4 0.25 0.04 <0.0001 0.24 0.03 <0.0001 0.35 0.03 <0.0001

3 0.27 0.03 <0.0001 " " "

2 0.27 0.03 <0.0001 " " "

1 0.22 0.03 <0.0001 " " "

Gait speed (m/s)

4 -4.73 0.73 <0.0001 -3.94 0.50 <0.0001 -5.26 0.58 <0.0001

3 -4.22 0.61 <0.0001 " " "

2 -4.14 0.55 <0.0001 " " "

1 -3.73 0.51 <0.0001 " " "

Pain

4 0.04 0.25 0.88 0.34 0.21 0.10 0.75 0.19 <0.0001

3 0.31 0.22 0.15 " " "

2 0.73 0.19 0.0002 0.78 0.17 <0.0001

1 0.83 0.18 <0.0001 " " "

Scale parameters
@ 1
@ 0.94 0.05 <0.0001
@ 0.83 0.04  <0.0001
@ 0.55 0.03  <0.0001

Random effect SD 2.28 0.08 <0.0001* 2.28 0.08 <0.0001* 2.28 0.10  <0.0001%*

* Stram and Lee test [35]
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Table II - Goodness of fit of four random-effect models for ordinal responses

Generalized Partial Proportional odds Stereotype model
ordered logit proportional odds model
model model
T
;—’ 2LL 9773 9790 9818 10243
(=
g Number of parameters 21 12 9 12
3
= SBC 9916 9872 9880 10325
(=
(72}
é. Coefficient of 0.580 0.571 0.579 0.316
= determination
Concordance 0.770 0.765 0.768 0.570

correlation coefficient
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Appendix :

SAS code for the stereotype model:

titlel ' Stereotype'
title2 ' AGE, TIME

I
QD
é’ proc nl m xed data= tabl e qmax=5000
a bounds 0 < epsyl-epsy3 <= 0.99
=
g parms al pha4=-8 al pha3=-8 al pha2=-6 al phal=-4
§ bet a1=0. 8 bet a2=0. 4
= epsy3=0.1 epsy2=0.1 epsyl=0.2
= eta4 = al phad4 + betal*tinme + beta2*age + u ;
& eta3 = al pha3 + (1-epsy3)*(betal*time + beta2*age) + u ;
3 eta2 = al pha2 + (1-epsy3-epsy2)*(betal*tinme + beta2*age) + u ;
S etal = al phal + (1-epsy3-epsy2-epsyl)*(betal*tine + beta2*age) +
§ u
\‘
= i f (iadl=4) then
i‘ z=exp(etad)/ (exp(etal)+exp(eta2)+exp(etal)+exp(etad)+1)
@ else if (iadl=3) then z=exp(eta3)/(exp(etal)+exp(eta2)+
g exp( et a3) +exp( et a4) +1)
= else if (iadl=2) then z=exp(eta2)/(exp(etal)+exp(eta2)+
= exp( et a3) +exp( et a4) +1)

else if (iadl=1) then z=exp(etal)/(exp(etal)+exp(eta2)+

exp( et al3) +exp(etad) +1)

else if (iadl=0) then z=1/(exp(etal)+exp(eta2)+

exp( et al3) +exp(etad) +1) ;

I1=1og(z) ;

nodel iadl ~ general (I1)

random u ~ normal (0, su**2) subj ect =i dent;

estimate 'phi 3" (1-epsy3);

estimate 'phi2' (1-epsy3-epsy2);

estimate 'phil" (1-epsy3-epsy2-epsyl);

predict etal out=etal

predict eta2 out=eta2;

predict eta3 out=eta3;

predict eta4 out=eta4;

run ;
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