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for competing risks data

A. Latouche∗ R. Porcher S. Chevret
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Abstract

Recently, regression analysis of the cumulative incidencefunction has gained interest in competing risks data
analysis, through the model proposed by Fine and Gray (JASA 1999;94:496–509). In this note, we point out that
inclusion of time-dependent covariates in this model can lead to serious bias. We illustrate the problems arising in
such a context, using bone marrow transplant data as a working example and numerical simulations. Practical advices
are given, preventing the misuse of this model.

1 Introduction

In longitudinal cohort studies, competing risks failure time data are commonly encountered. For instance, after allo-
geneic bone-marrow transplantation (aBMT) for leukemic patients in complete remission, death in remission competes
with relapse. This will be our working example. To isolate the effect of covariates on these risks, several regression
models can be used. Actually, regression analysis of competing risks failure time can be performed either by modelling
the cause specific hazard function or the cumulative incidence function (also known as the subdistribution function).
The former approach is commonly used in this setting (Rosenberg et al., 2004; Cornelissen et al., 2001). However, the
instantaneous risk of specific failure cause is sometimes ofless interest than the overall probability of this specific fail-
ure cause. In our working example, actually, the overall probability of death in remission, often referred as “treatment
related mortality” appears more interesting than the instantaneous risk of dying in remission. Otherwise, the overall
probability of relapse could also be of interest to quantifyoutcomes in the population of transplanted patients.

Such a probability of failure could be formulated as either the marginal distribution (of the specific failure cause),
that is the probability of this failure cause in a populationwhere only this failure cause acts, or the cumulative incidence
function, i.e., the overall probability of the specific cause of failure in the presence of the competing failure causes.
However, the marginal distribution is not identifiable fromavailable data without additional assumptions, such as
independence between competing failure causes. Therefore, cumulative incidence functions may appear more relevant
than marginal probabilities (Pepe and Mori, 1993; Korn, 1992; Gaynor et al., 1993).

To assess the effect of a covariate on the cumulative incidence of a competing risk, Fine and Gray (1999) proposed
a regression model. It has been recently used to model clinical data in cancer (Colleoni et al., 2000; Robson et al.,
2004) or hematology (Rocha et al., 2001, 2002). It allows to estimate the effect of constant (time-fixed) covariates on
the subdistribution hazard of specific failure causes. Time-by-covariate interaction is handled by this model, but most
of time-dependent covariates such as “one time jumps” (taking 0 value unless the outcome of interest is observed, and
1 thereafter) do not belong to such a formulation. For instance, in the context of our working example, patients with
leukemia frequently develop after aBMT acute graft versus host disease (aGvHD) wherin the transplanted immune
cells attack the host tissues. Some evidence exists to consider that occurrence of aGvHD modifies patients’ outcome
as it increases risk of mortality but decreases risk of relapse. One could be interested in estimating the effect of such
a time-dependent covariate (taking zero values unless the aGvHD is observed and 1 thereafter) on the occurrence of
failures of interest (death or relapse).

We show that inclusion of such a time-dependent covariate isnot relevant when modelling the subdistribution
hazards. This article should be considered as a guideline for preventing the misuse of the model in this setting. In
Section 2, we present the Fine and Gray regression model. A real data example is proposed in Section 3. In Section
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4, we present a Monte Carlo simulation study to assess the bias in estimating the effect of a time-dependent covariate
using the Fine and Gray model. Concluding remarks are presented in Section 5.

2 Models

Let T be the failure time,ε the cause of failure, whereε = 1 denotes the cause of interest andε = 2 the competing
cause (considering, without loss of generality, a single competing failure cause), andFi = Pr(T ≤ t, ε = i) the
cumulative incidence function of failure from the causei (= 1, 2). Gray (1988) defined the subdistribution hazard for
causei as:

λi(t) = lim
dt→0

1

dt
Pr {t ≤ T ≤ t+ dt, ε = i|T ≥ t ∪ (T ≤ t ∩ ε 6= i)} ,

by contrast to the cause-specific hazard:

αi(t) = lim
dt→0

1

dt
Pr {t ≤ T ≤ t+ dt, ε = i|T ≥ t} .

Similarly to the Cox model for the cause-specific hazard,αi(t;X(t)) = αi0(t) exp{biX(t)}, whereαi0(t) is a non
specified baseline hazard function, andbi is the regression parameter, Fine and Gray (1999) proposed aregression
model for the subdistribution hazard:λi(t;X(t)) = λi0(t) exp{βiX(t)}. By construction, the subdistribution hazard
is explicitely related to the cumulative incidence function of failure from causei, by λi(t) = −d log{1 − Fi(t)}/dt,
while the relation between the cause-specific hazard and thecumulative incidence function is less straightforward, and
involves the cause-specific hazard of failure from other causes.

For inference in this model fromj = 1, . . . , N individuals, the risk set at timet expresses asR(t) = {j : (t ≤
Tj)∪ (Tj ≤ t∩ εj 6= i)}. This includes individuals who have not failed from any causeby t, like in the Cox model for
the cause specific hazard (with risk set at time t defined by{j : t ≤ Tj)}), and, in addition, those who have previously
failed from the competing cause beforet.

Let T be the time of failure of the individual, andZ be the time to occurrence of any event of interest. Suppose
that we wish to estimate the effect ofX(t) = 1{Z≤t} on the subdistribution hazardλ1(t) at a particular timeτ . If
T ≤ τ and the cause of failure is not that of interest (ε = 2), the risk set includes all the individuals who have not
experienced any failure, and those who have previously failed from the competing cause. Moreover, in the case of
an absorbing competing cause of failure such as death, the covariate value of a patient who dies cannot be observed
anymore while the patient is still considered to be at risk until the maximum failure time from cause 1 of the cohort.
Estimation based on the Fine and Gray model requires to know,for patients who failed from the competing cause, the
entire path (history) of the covariate as well as futur values (if they merely exist). This is illustrated in Figure 1, in
absence of censoring.

[Figure 1 about here.]

Let “non-identifiable path” denote further those observations, in opposition to “identifiable path” where the occurrence
of the competing cause of failure does not avoid the observation ofX(t). Before going any further, and for illustration
purpose, we will consider thelast observation carried forward(LOCF) approach for handling unknownX(t). It is
known that this method introduces bias in inference even under missing completely at random (MCAR) and missing
at random (MAR) settings (Cook et al., 2004). However, the point is that we cannot recover information whatever
estimation technique is used to handle unknownX(t). The bias overtly came from a non identifiability problem as
attempts are made to condititon on the future.

3 A clinical example

We illustrated estimation of the effect of such a time-dependent covariate on a specific failure cause on real data. Data
consist in a sample of 180 children with acute leukemia who underwent aBMT between 1994 and 1998 (Rocha et al.,
2001). Of these 180 patients, 34 developed aGvHD followed byeither relapse for 6 patients or death in remission
for 22. Among the 146 patients who did not experience aGvHD, there were 60 relapses and 22 deaths in remission
(Figure 2). No patient was loss to follow-up. We were concerned by estimating the effect of aGvHD on the occurrence
of relapse (ε = 1).
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[Figure 2 about here.]

Estimation ofβ1 was carried out using thesurvival package ofR with competing failure observations censored
at their follow-up time (difference between the reference date and the entry date), as censoring only results from
administrative loss to follow-up. Estimation ofb1 was performed by using a standard Cox model, where deaths in
remission were censored at the time of death. The time-dependent covariate, aGvHD, was considered as a one-time
jump, taking the value 0 unless aGvHD is observed. Of note, for the Fine and Gray model, the last value of the jump
was carried over forward after the competing failure time ofdeath in remission.

The estimated effect of aGvHD on the hazard of relapse, with death in remission defining the competing cause of
failure, was statistically significant, witĥβ1 = −0.975 (SE = 0.429, p = 0.023). By contrast, the effect of aGvHD
on the cause-specific hazard of relapse was not, withb̂1 = −0.404 (SE = 0.43, p = 0.322).

In the next Section, a simulation study will exhibit the factthat the former estimate have no sense as we are
obviously in a “non-identifiable path” setting.

4 Simulation

We conducted a simulation study to numerically illustrate problems arising when using the Fine and Gray model
to estimate the effect of a time-dependent covariate on the subdistribution hazard of failure. Specifically, we were
interested in examining the bias in estimatingβ1 when the competing cause of failure is either non absorbing or
absorbing for the covariate process. For the time dependentcovariate, we considered a one jump process as defined by
X(t) = 1{Z≤t}, whereZ is the time to occurrence of some event that could be related to the outcome. We attempted
to mimic the data example exposed above.

All simulations were based on 1,000 independent realizations with reasonable sample sizes of 250. For simplicity,
we supposed the absence of right censoring. The occurrence of jump in the covariate process was generated from a
Bernoulli distribution with parameterq = 0.6.

Then, the time to occurrence of aGvHD,Z, was chosen to reach a probability near1 of aGvHD at time 100 (days),
as aGvHD is defined only within the first 100 days post-transplant, with a shape similar to that observed on real data
sample. Thus, the individual timesZ were generated from a random variable40×W , whereW has Weibull distribution
with shape parameter of 2 and scale parameter of 1.

Generating failure times was complicated by the presence ofthe time-dependent covariate. It was based on inver-
sion of the cumulative subdistribution hazard functions, adapting the method proposed by Leemis et al. (1990) in the
case of survival data. Lifetime data from the cause of interest were generated as described by Fine and Gray (1999).
Details of the failure times generation is presented in the Appendix.

We simulated two types of covariate paths: (i) identifiable paths, when the covariate process of patients who
experienced the competing failure cause can still be observed, and (ii) non identifiable paths, when the time-dependent
covariateX(t) cannot be observed after occurrence of the competing failure cause. In this latter case we used the value
ofX(t) at the time of failure throughout the risk sets.

Parameters(β1, β2) were set at(0.5, 0.5) in (i), and at(−0.5, 0.5) in (ii). Let r1 be the rate of failures from cause of
interest andr2 from the competing cause. From the 1,000 simulations, we computed the mean estimate ofβ1 (E(β̂1))
and of the proportionγ of patients who experienced the competing cause of failure before any jump ofX(t), for values
of p ranging from0.1 to 1 and values ofK = r2/r1 ranging from0.1 to 2.

We begin by presenting simulation results from model with identifiable paths. Figure 3 displays the mean estimate
of β̂1 againstK (Figure 3a) andp (Figure 3c). Whatever the value ofK and ofp,E(β̂1) was close to its nominal value.
This exemplifies the ability of the model to estimate the regression coefficient when the entire covariate path is known.

[Figure 3 about here.]

Figure 4 displays simulations results when the occurrence of the competing cause of failure avoids the observation of
the jump process (non identifiable paths). Contrarily to theprevious observable case,β̂1 was systematically biased,
with bias increasing withK (Figure 4a). Interestingly, the shape of the estimatedβ1 againstK was very similar to that
of γ (Figure 4b). Next, forK = 1, we computedE(β̂1) for values of parameterp from 0.1 to 1 (Figure 4c). It appears
that the estimateŝβ1 are biased, except in the case ofp = 1, i.e., when all individuals fail from the cause of interest. In
this case,γ is obviously null, as shown on Figure 4d. Whenp is close to zero,F1(t) ≈ 0, and the model is “ill-posed”,
so that computinĝβ1 does not make any sense. Similar shapes were observed for values ofr1 = 0.005, 0.01, 0.02,
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with an increase in the bias ofE(β̂1) asr1 increases (or equivalently an increase inγ as shown on Figure 4b). Of note,
a linear decrease ofγ with p was observed (Figure 4d), whereas such pattern was not foundbetweenE(β̂1) andp.

[Figure 4 about here.]

Moreover in our simulation setting, one can show that:γ = (1 − p){q + (1 − q)×C}, whereC is the probability of
jump after failure, conditional on failure from competing cause, and is therefore independent ofp andq. As a result,γ
is indeed a decreasing linear function ofp as shown in Figures 3d and 4d.

5 Discussion

In this paper, we showed, on the basis of a working example anda simulation study, that the Fine and Gray model is
not appropriate for estimating the effect of any time-dependent covariate unless the entire covariate path is observable.
Otherwise,i.e., in the case of so-called “internal” time-dependent covariate using the terminology of Kalbfleisch and
Prentice (1980), the use of the Fine and Gray model can lead toa serious bias in estimate, even in the simple studied
case of a one time jump process, which is actually often observed in clinical epidemiology data.

To replace unobservable values of the time-dependent covariate, the simple LOCF imputation, i.e using (and keep-
ing) the value of the covariate at the time of failure for patients who developped the competing cause of failure, is
not advisable, as shown by our simulation results. Moreover, alternative modelling approaches to impute values for
unobservable covariates appear somewhat useless in this context, as they could not recover inexistent information.

Since the Fine and Gray model can only be used if the entire path of the time-dependent covariate is known, this
obviously prohibits the introduction of any time-dependent covariate in the model when death is a competing cause of
failure. For instance, in our working example, no valid estimation of the effect of aGvHD on the subdistribution hazard
of relapse could be obtained, due to deaths in remission. Fornon fatal competing events, the Fine and Gray model
should also not be used, unless checking carefully that the observation period does not end with the occurrence of the
competing event.

Our main concern was to prevent the misuse of the Fine and Graymodel with time-dependent explanatory variables.
Our simulation studies also provide a better understandingof the structure of the “unnatural” risk set of the Fine and
Gray model, pointing out that competing failures stay in therisk set until censoring time.

If one could reasonably think of allowing the covariate to influence the subdistributuion hazard only up to the first
competing event, this would entail to modify the definition of the risk-set, that is to say to modify the model itself.
Nonetheless, this gives direction to further developpments of new models with “weighted influence” of covariates.
To cope with estimation of the effect of time-dependent covariates, other statistical models should thus be proposed.
Multistate models with cause-specific transition rate havealready been used (Andersen et al., 2002; Hougaard, 1999).
Further work is needeed to estimate time-dependent transition (non-homogeneous markov process) in this setting.

Appendix

Briefly, the subdistribution of failure times from the causeof interest (ε = 1) is given byF1(t,X(t)) = 1− [1− p{1−
exp(−r1t)}]

exp(β1X(t)), which is a unit exponential mixture with mass1 − p at +∞, wherep is the proportion of
failures from the cause of interest, and uses the proportional subdistribution hazards model to obtain the subdistribution
for nonzero covariate values. Letψ(X(t)) be the link function relating the covariate process to the subdistribution
hazard function, andΨ(.) the cumulative link functioni.e. Ψ(t) =

∫ t

0
ψ(X(u))du. Let Λ1(.) be the cumulative

subdistribution hazard function,Λ1(t) =
∫ t

0
λ1(u)du. As a result,Λ1(t) = − logS10(t) for t ≤ τ andΛ1(t) =

− logS10(τ) + exp(β1) × {logS10(τ) − logS10(t)} otherwise, whereS10(t) = 1 − F1(t,X(t) = 0). Failure times
from the cause of interest were thus generated through,t← Ψ−1[Λ−1

1 {− log(1−u)}],whereu is taken from a uniform
distribution on[0, 1] andψ(X(t)) = exp{β1X(t)}.

Since the subdistribution for the competing failure cause was considered exponentially distributed with rater2, we
directly used the non-modified algorithm of Leemis et al. (1990) to generate corresponding competing failure times,
with the link functionψ(X(t)) = exp{β2X(t)}.

Simulation codes are available upon request to the corresponding author.
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Figure 1: Illustration of the covariate path,X(τ) overtimeτ according to the experienced events.T denotes the failure
time and Z denotes the time to occurrence of the event of interest. Upper plots concern patients who failed from the
cause of interest (ε = 1) while lower plots concern patients who failed from the competing failure cause (ε = 2). Left
plots concerns patients who experienced the event of interest, and right plots concern patients who did not.T ∗ denotes
the maximal failure time among the sample.
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Figure 3: Simulation results in the case of identifiable path: Mean value of̂β1 (a) and the proportionγ of patients who
experience the competing failure cause before any jump (b) against the ratior2/r1 of the rates of failures from cause 2
and 1. Mean value of̂β1 (c) andγ (d) against the proportionp of failure from cause 1.

8



r2 r1

E
(β

1^
)

0.10 0.25 0.50 1.00 2.00

−
0.

75
−

0.
50

−
0.

25
0.

00
0.

25
0.

50

(a)

β1
+ +

+ +
+

+
+

+

+

+

+r1=0.005

r1=0.01

r1=0.02

r2 r1

γ
0.10 0.25 0.50 1.00 2.00

0.
20

0.
25

0.
30

0.
35

0.
40

(b)

+ +
+ +

+
+

+
+

+

+
+

p

E
(β

1^
)

0.10 0.40 0.70 1.00

−
0.

75
−

0.
50

−
0.

25
0.

00
0.

25
0.

50

(c)

β1

+

+
+ + + + +

+
+

+

r1=0.005

r1=0.01

r1=0.02

p

γ

0.10 0.40 0.70 1.00

0.
0

0.
2

0.
4

0.
6

0.
8

(d)

+

+

+

+

+

+

+

+

+

+
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who experience the competing failure cause before any jump (b) against the ratior2/r1 of the rates of failures from
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