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Abstract

Recently, regression analysis of the cumulative inciddooetion has gained interest in competing risks data
analysis, through the model proposed by Fine and Gray (JA®9;94:496-509). In this note, we point out that
inclusion of time-dependent covariates in this model cad l® serious bias. We illustrate the problems arising in
such a context, using bone marrow transplant data as a vgoeikimmple and numerical simulations. Practical advices
are given, preventing the misuse of this model.

1 Introduction

In longitudinal cohort studies, competing risks failuraéi data are commonly encountered. For instance, after allo-
geneic bone-marrow transplantation (aBMT) for leukemitiquais in complete remission, death in remission competes
with relapse. This will be our working example. To isolate #ffect of covariates on these risks, several regression
models can be used. Actually, regression analysis of cangpeasks failure time can be performed either by modelling
the cause specific hazard function or the cumulative inciddanction (also known as the subdistribution function).
The former approach is commonly used in this setting (Rosendt al., 2004; Cornelissen et al., 2001). However, the
instantaneous risk of specific failure cause is sometimésssfinterest than the overall probability of this specHit-f

ure cause. In our working example, actually, the overalbptility of death in remission, often referred as “treattnen
related mortality” appears more interesting than the mtst@eous risk of dying in remission. Otherwise, the overall
probability of relapse could also be of interest to quantifyfcomes in the population of transplanted patients.

Such a probability of failure could be formulated as eitliner narginal distribution (of the specific failure cause),
that is the probability of this failure cause in a populatidrere only this failure cause acts, or the cumulative inuige
function, i.e., the overall probability of the specific causf failure in the presence of the competing failure causes.
However, the marginal distribution is not identifiable frawailable data without additional assumptions, such as
independence between competing failure causes. Theretormilative incidence functions may appear more relevant
than marginal probabilities (Pepe and Mori, 1993; Korn,2;99aynor et al., 1993).

To assess the effect of a covariate on the cumulative inceleha competing risk, Fine and Gray (1999) proposed
a regression model. It has been recently used to model alidata in cancer (Colleoni et al., 2000; Robson et al.,
2004) or hematology (Rocha et al., 2001, 2002). It allowsstomeate the effect of constant (time-fixed) covariates on
the subdistribution hazard of specific failure causes. Tlaypeovariate interaction is handled by this model, butmos
of time-dependent covariates such as “one time jumps”rftpRivalue unless the outcome of interest is observed, and
1 thereafter) do not belong to such a formulation. For ingtaim the context of our working example, patients with
leukemia frequently develop after aBMT acute graft versost ldisease (aGvHD) wherin the transplanted immune
cells attack the host tissues. Some evidence exists todmmsiat occurrence of aGvHD modifies patients’ outcome
as it increases risk of mortality but decreases risk of s#aj®ne could be interested in estimating the effect of such
a time-dependent covariate (taking zero values unlessGnélB is observed and 1 thereafter) on the occurrence of
failures of interest (death or relapse).

We show that inclusion of such a time-dependent covariateoiselevant when modelling the subdistribution
hazards. This article should be considered as a guidelinpréwventing the misuse of the model in this setting. In
Section 2, we present the Fine and Gray regression modelalAlata example is proposed in Section 3. In Section
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4, we present a Monte Carlo simulation study to assess tdrb&stimating the effect of a time-dependent covariate
using the Fine and Gray model. Concluding remarks are predémSection 5.

2 Models

Let 7" be the failure timeg the cause of failure, where= 1 denotes the cause of interest ane- 2 the competing
cause (considering, without loss of generality, a singlpeting failure cause), anfl;, = Pr(T < t,e = i) the
cumulative incidence function of failure from the cauge- 1,2). Gray (1988) defined the subdistribution hazard for
cause as:

1
Ni(t) = Jim - Pri{t <T <t+dte =i|T >tU(T <tNe#i)},

by contrast to the cause-specific hazard:

a;(t) = dltiElO%PI‘{t <T <t+dte=ilT >t}.
Similarly to the Cox model for the cause-specific hazard(; X (t)) = auo(t) exp{b; X (t)}, wherea,o(t) is a non
specified baseline hazard function, ands the regression parameter, Fine and Gray (1999) proposegrassion
model for the subdistribution hazard; (¢; X (¢)) = Ao (t) exp{B3:; X (¢)}. By construction, the subdistribution hazard
is explicitely related to the cumulative incidence funatif failure from cause, by \;(t) = —dlog{l — F;(¢)}/dt,
while the relation between the cause-specific hazard ancltin@lative incidence function is less straightforward] an
involves the cause-specific hazard of failure from otheseau

For inference in this model from = 1, ..., N individuals, the risk set at timeexpresses aR(t) = {j : (t <
T;)U(T; < tnej #14)}. This includes individuals who have not failed from any caloge, like in the Cox model for
the cause specific hazard (with risk set at time t definefljyt < T3;)}), and, in addition, those who have previously
failed from the competing cause befdare

Let T" be the time of failure of the individual, and be the time to occurrence of any event of interest. Suppose
that we wish to estimate the effect &f(t) = 1;,<,, on the subdistribution hazarx () at a particular timer. If
T < 7 and the cause of failure is not that of interest= 2), the risk set includes all the individuals who have not
experienced any failure, and those who have previouslgddilom the competing cause. Moreover, in the case of
an absorbing competing cause of failure such as death, tlaiate value of a patient who dies cannot be observed
anymore while the patient is still considered to be at riskl tile maximum failure time from cause 1 of the cohort.
Estimation based on the Fine and Gray model requires to Kioowatients who failed from the competing cause, the
entire path (history) of the covariate as well as futur val(iethey merely exist). This is illustrated in Figure 1, in
absence of censoring.

[Figure 1 about here.]

Let “non-identifiable pathdenote further those observations, in oppositionitiehtifiable pathiwhere the occurrence
of the competing cause of failure does not avoid the observaf X (¢). Before going any further, and for illustration
purpose, we will consider thiast observation carried forwardLOCF) approach for handling unknowXi(¢). It is
known that this method introduces bias in inference evereumdssing completely at random (MCAR) and missing
at random (MAR) settings (Cook et al., 2004). However, thinpis that we cannot recover information whatever
estimation technique is used to handle unkno¥ft). The bias overtly came from a non identifiability problem as
attempts are made to condititon on the future.

3 Aclinical example

We illustrated estimation of the effect of such a time-dejsst covariate on a specific failure cause on real data. Data
consist in a sample of 180 children with acute leukemia whiemwent aBMT between 1994 and 1998 (Rocha et al.,
2001). Of these 180 patients, 34 developed aGvHD followeeither relapse for 6 patients or death in remission
for 22. Among the 146 patients who did not experience aGvHBra were 60 relapses and 22 deaths in remission
(Figure 2). No patient was loss to follow-up. We were conedrby estimating the effect of aGvHD on the occurrence
of relapse £ = 1).
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[Figure 2 about here.]

Estimation of3; was carried out using theur vi val package oR with competing failure observations censored
at their follow-up time (difference between the referene¢edand the entry date), as censoring only results from
administrative loss to follow-up. Estimation of was performed by using a standard Cox model, where deaths in
remission were censored at the time of death. The time-diepetovariate, aGvHD, was considered as a one-time
jump, taking the value 0 unless aGvHD is observed. Of notehi® Fine and Gray model, the last value of the jump
was carried over forward after the competing failure time@dth in remission.

The estimated effect of aGvHD on the hazard of relapse, va#ttdin remission defining the competing cause of
failure, was statistically significant, with, = —0.975 (SE = 0.429, p = 0.023). By contrast, the effect of aGvHD
on the cause-specific hazard of relapse was not, byith —0.404 (SE =0.43,p = 0.322).

In the next Section, a simulation study will exhibit the faloait the former estimate have no sense as we are
obviously in a ‘hon-identifiable pathsetting.

4 Simulation

We conducted a simulation study to numerically illustratelems arising when using the Fine and Gray model
to estimate the effect of a time-dependent covariate on ubdistribution hazard of failure. Specifically, we were
interested in examining the bias in estimatifigwhen the competing cause of failure is either non absorbing o
absorbing for the covariate process. For the time depemdeatiate, we considered a one jump process as defined by
X (t) = 1{z<4, WhereZ is the time to occurrence of some event that could be relatétetoutcome. We attempted
to mimic the data example exposed above.

All simulations were based on 1,000 independent realimatiith reasonable sample sizes of 250. For simplicity,
we supposed the absence of right censoring. The occurréfemp in the covariate process was generated from a
Bernoulli distribution with parameter = 0.6.

Then, the time to occurrence of aGvHD, was chosen to reach a probability néaf aGvHD at time 100 (days),
as aGvHD is defined only within the first 100 days post-traasiplwith a shape similar to that observed on real data
sample. Thus, the individual timéswere generated from a random variadile< 17, wherelV has Weibull distribution
with shape parameter of 2 and scale parameter of 1.

Generating failure times was complicated by the presentieecfime-dependent covariate. It was based on inver-
sion of the cumulative subdistribution hazard functiomging the method proposed by Leemis et al. (1990) in the
case of survival data. Lifetime data from the cause of isteneere generated as described by Fine and Gray (1999).
Details of the failure times generation is presented in thpehdix.

We simulated two types of covariate paths: (i) identifiab&hg, when the covariate process of patients who
experienced the competing failure cause can still be obserand (i) non identifiable paths, when the time-dependent
covariateX (t) cannot be observed after occurrence of the competingéedlamse. In this latter case we used the value
of X (¢) at the time of failure throughout the risk sets.

Parameter§s,, 32) were set at0.5, 0.5) in (i), and at(—0.5, 0.5) in (ii). Let ; be the rate of failures from cause of
interest and- from the competing cause. From the 1,000 simulations, wepcd@d the mean estimate 6f (E(Bl))
and of the proportiory of patients who experienced the competing cause of faileferb any jump ofX (¢), for values
of p ranging from0.1 to 1 and values o’ = r5/r, ranging from0.1 to 2.

We begin by presenting simulation results from model witmidfiable paths. Figure 3 displays the mean estimate
of againstK (Figure 3a) ang (Figure 3c). Whatever the value &f and ofp, E(Bl) was close to its nominal value.
This exemplifies the ability of the model to estimate the esgion coefficient when the entire covariate path is known.

[Figure 3 about here.]

Figure 4 displays simulations results when the occurrefhtiseocompeting cause of failure avoids the observation of
the jump process (non identifiable paths). Contrarily tohevious observable casg, was systematically biased,
with bias increasing witli( (Figure 4a). Interestingly, the shape of the estimgtedgainstK” was very similar to that

of v (Figure 4b). Next, for = 1, we computecE(Bl) for values of parameterfrom 0.1 to 1 (Figure 4c). It appears
that the estimates; are biased, except in the casepof 1, i.e, when all individuals fail from the cause of interest. In
this casey is obviously null, as shown on Figure 4d. Wheis close to zeroF; (t) = 0, and the model is “ill-posed”,

so that computingd; does not make any sense. Similar shapes were observed feswal;, = 0.005,0.01, 0.02,
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with an increase in the bias @‘(Bl) asr; increases (or equivalently an increase ias shown on Figure 4b). Of note,
a linear decrease afwith p was observed (Figure 4d), whereas such pattern was not fietagten® (3;) andp.

[Figure 4 about here.]

Moreover in our simulation setting, one can show that: (1 — p){q + (1 — ¢) x C}, whereC is the probability of
jump after failure, conditional on failure from competinguse, and is therefore independenp @hdq. As a result;y
is indeed a decreasing linear functionpadis shown in Figures 3d and 4d.

5 Discussion

In this paper, we showed, on the basis of a working exampleaasichulation study, that the Fine and Gray model is
not appropriate for estimating the effect of any time-dejger covariate unless the entire covariate path is obskervab
Otherwisej.e., in the case of so-called “internal” time-dependent catarusing the terminology of Kalbfleisch and
Prentice (1980), the use of the Fine and Gray model can leadgéuious bias in estimate, even in the simple studied
case of a one time jump process, which is actually often elesan clinical epidemiology data.

To replace unobservable values of the time-dependentieteathe simple LOCF imputation, i.e using (and keep-
ing) the value of the covariate at the time of failure for pats who developped the competing cause of failure, is
not advisable, as shown by our simulation results. Morealernative modelling approaches to impute values for
unobservable covariates appear somewhat useless in thextaas they could not recover inexistent information.

Since the Fine and Gray model can only be used if the entitegfahe time-dependent covariate is known, this
obviously prohibits the introduction of any time-dependmvariate in the model when death is a competing cause of
failure. For instance, in our working example, no validrestiion of the effect of aGvHD on the subdistribution hazard
of relapse could be obtained, due to deaths in remission.néioifatal competing events, the Fine and Gray model
should also not be used, unless checking carefully thatlikergation period does not end with the occurrence of the
competing event.

Our main concern was to preventthe misuse of the Fine and@odg| with time-dependent explanatory variables.
Our simulation studies also provide a better understanafitige structure of the “unnatural” risk set of the Fine and
Gray model, pointing out that competing failures stay inribk set until censoring time.

If one could reasonably think of allowing the covariate tfiiance the subdistributuion hazard only up to the first
competing event, this would entail to modify the definitidrtioe risk-set, that is to say to modify the model itself.
Nonetheless, this gives direction to further developpsmeninew models with “weighted influence” of covariates.
To cope with estimation of the effect of time-dependent ciates, other statistical models should thus be proposed.
Multistate models with cause-specific transition rate relweady been used (Andersen et al., 2002; Hougaard, 1999).
Further work is needeed to estimate time-dependent tramgiton-homogeneous markov process) in this setting.

Appendix

Briefly, the subdistribution of failure times from the cawudénterest ¢ = 1) is given byF; (¢, X (t)) = 1—[1—p{1—

exp(—ryt)}]&PPX (1) which is a unit exponential mixture with mass- p at +oo, wherep is the proportion of
failures from the cause of interest, and uses the prop@itgubdistribution hazards model to obtain the subdistiobu
for nonzero covariate values. Let{ X (¢)) be the link function relating the covariate process to thedgtribution
hazard function, and@(.) the cumulative link function.e. ¥(t) = fot (X (u))du. Let A1(.) be the cumulative

subdistribution hazard function; (t) = fg A1(u)du. As aresult,Aq(t) = —logSio(t) fort < T andAy(t) =
—log S10(7) + exp(B1) x {logSi0(7) — log S19(t)} otherwise, wher&o(t) = 1 — Fi(t, X (t) = 0). Failure times
from the cause of interest were thus generated thraughW —'[A; ' {— log(1 —u)}], whereu is taken from a uniform
distribution on[0, 1] andy (X (t)) = exp{/1 X (¢)}.

Since the subdistribution for the competing failure cauas wonsidered exponentially distributed with ratewe
directly used the non-modified algorithm of Leemis et al.9@Pto generate corresponding competing failure times,
with the link functiony (X (¢)) = exp{32X (¢)}.

Simulation codes are available upon request to the cornelipg author.
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Figure 1: lllustration of the covariate patk(7) overtimer according to the experienced everftsdenotes the failure
time and Z denotes the time to occurrence of the event oféstetJpper plots concern patients who failed from the
cause of interest(= 1) while lower plots concern patients who failed from the cetipg failure causes(= 2). Left
plots concerns patients who experienced the event of sttexed right plots concern patients who did ri6t.denotes

the maximal failure time among the sample.
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