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Abbreviations 
 

DOPAC/DA, dihydroxyphenyl acetic acid/dopamine 

DREM, direct REM sleep onset from wakefulness 

ECG, electrocardiogram 

EDS, excessive daytime sleepiness 

EEG, electroencephalogram 

EMG, electromyogram 

ESS, Epworth sleepiness scale 

HA, histamine 

KO, knockout 

MHPG/NA, 4-hydroxy-3-methoxy-phenylglycol/noradrenaline 

MSLT, multiple sleep latency tests 

MWT, maintenance of wakefulness test 

REM, rapid eye movement 

SWS, slow wave sleep 

t-MeHA, tele-methylhistamine  

WASO, wake-up episodes after sleep onset 

WT, wild-type 
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Abstract 

 

Narcolepsy is characterized by excessive daytime sleepiness(EDS), cataplexy, direct 

onsets of rapid eye movement(REM) sleep from wakefulness(DREMs) and deficiency of 

orexins, neuropeptides that promote wakefulness largely via activation of histamine(HA) 

pathways. The hypothesis that the orexin defect can be circumvented by enhancing HA 

release was explored in narcoleptic mice and patients using tiprolisant, an inverse H3-receptor 

agonist. In narcoleptic orexin-/-mice, tiprolisant enhanced HA and noradrenaline neuronal 

activity, promoted wakefulness and decreased abnormal DREMs, all effects being amplified 

by co-administration of modafinil, a currently prescribed wake-promoting drug. In a pilot 

single-blind trial on 22 patients receiving a placebo followed by tiprolisant, both for one 

week, the Epworth Sleepiness Scale(ESS) score was reduced from a baseline value of 17.6 by 

1.0 with the placebo(p>0.05) and 5.9 with tiprolisant(p<0.001). Excessive daytime sleep, 

unaffected under placebo, was nearly suppressed on the last days of tiprolisant-dosing. H3-

receptor inverse agonists could constitute a novel effective treatment of EDS, particularly 

when associated with modafinil. 

 

 
Keywords: Narcolepsy; sleep disorders; histamine; orexin; H3-receptor inverse agonist; 
wakefulness; somnolence. 

 3

H
A

L author m
anuscript    inserm

-00215993, version 1
H

A
L author m

anuscript    inserm
-00215993, version 1

H
A

L author m
anuscript    inserm

-00215993, version 1



Introduction 

Narcolepsy is a rare disabling sleep disorder with a prevalence of 0.02-0.18%; it is 

characterized by excessive daytime sleepiness (EDS) and abnormal rapid eye movement 

(REM or paradoxical) sleep manifestations, including cataplexy (sudden loss of muscle tone 

triggered by strong emotions), direct transitions from wakefulness to REM sleep (DREMs), 

sleep paralysis and hypnagogic hallucinations (Baumann et al., 2005; Mignot, 2005; Mignot 

and Nishino, 2005; Dauvilliers et al., 2007). 

Recent data in animal models revealed that deficient orexin (also known as hypocretin) 

transmission causes narcolepsy (Lin et al., 1999; Chemelli et al., 1999). A marked decrease in 

orexin-A levels in the cerebrospinal fluid and in the number of orexin neurons in post-mortem 

brain tissues was also reported in patients with narcolepsy with cataplexy (Nishino et al., 

2000). Orexins are excitatory peptides released by neurons from the lateral hypothalamus with 

widespread projections namely to aminergic neurons known to be involved in the control of 

wakefulness, e.g. histaminergic or noradrenergic neurons (Bayer et al., 2001; Eriksson et al., 

2001; Bourgin et al., 2000). Since orexin neurons promote wakefulness, treatment by orexin 

administration would be desirable in narcoleptic patients but, as is often the case with 

peptides, it is not practically feasible for bioavailability reasons. 

We reasoned that the lack of orexins could be circumvented by activating histaminergic 

neurons pharmacologically. Histaminergic neurons emanate from the tuberomammillary 

nucleus in the posterior hypothalamus and send excitatory terminals to the whole 

telencephalon. These neurons represent a major waking system in the brain (Schwartz et al., 

1991; Lin, 2000) and appear necessary for the waking effect of orexins (Huang et al., 2001). 

We examined this hypothesis, first using a reliable animal model of narcolepsy, the 

orexin-/-mouse, which displays DREMs, a characteristic symptom of the disease (Chemelli et 

al., 1999; Mignot, 2005; Fujiki, et al., 2006), then in narcoleptic patients, by testing the effects 
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of tiprolisant (BF2.649), a potent and selective inverse agonist of the H3 receptors (Ligneau et 

al., 2007a and 2007b) in both proof-of-concept studies. This class of agents is known to 

promote wakefulness by inhibiting the constitutively active H3-autoreceptor, thereby 

enhancing histaminergic neuron activity and histamine (HA) release (Schwartz et al., 1991; 

Lin, 2000; Morisset et al., 2000; Vanni-Mercier et al., 2003; Parmentier et al., 2002, 2007). 

 

Material and Methods 

Animals and Surgery 

All experiments followed EEC (86/609/EEC) and French National Committee (decree 

87/848) directives and every effort was made to minimize the number of animals used and 

any pain and discomfort. Prepro-orexin knockout (KO) mice were offspring of the mouse 

strain generated by Chemelli et al. (1999) and kept on C57BL/6J genomic background. After 

backcrossing male orexin-/- mice and female wild-type (WT) mice for nine generations, the 

obtained orexin+/- mice were crossed to produce heterozygote and homozygote WT and KO 

littermates. To determine their genotypes with respect to orexin gene, tail biopsies were 

performed at the age of 4 weeks for DNA detection using PCR. The KO and WT alleles were 

amplified using a neo primer, 5’-CCGCTATCAGGACATAGCGTTGGC, and two genomic 

primers, 5’-GACGACGGCCTCAGACTTCTTGGG and 

5’TCACCCCCTTGGGATAGCCCTTCC, the latter being common to KO and WT mice. The 

expected products were 600 and 400 base pairs for KO and WT, respectively. 

At the age of 12 weeks and with a body weight of 30±2 g, mice used for EEG and sleep-

wake studies were chronically implanted, under deep gas anesthesia using isoflurane (2%, 200 

ml/min) and a TEM anesthesia system (Bordeaux, France), with six cortical electrodes 

(gold-plated tinned copper wire, Ø = 0.4 mm, Filotex, Draveil, France) and three muscle 

electrodes (fluorocarbon-coated gold-plated stainless steel wire, Ø = 0.03 mm, Cooner Wire 
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Chatworth, CA, U.S.A.) to record the electroencephalogram (EEG) and electromyogram 

(EMG) and to monitor the sleep-wake cycle. All electrodes were previously soldered to a 

multi-channel electrical connector and each was separately insulated with a covering of 

heat-shrinkable polyolefin/polyester tubing. Cortical electrodes were inserted into the dura 

through 3 pairs of holes (Ø = 0.5 mm) made in the skull, located respectively in the frontal (1 

mm lateral and anterior to the bregma), parietal (1 mm lateral to the midline at the midpoint 

between the bregma and lambda), and occipital (2 mm lateral to the midline and 1 mm 

anterior to the lambda) cortex. Muscle electrodes were inserted into the neck muscles. Finally, 

the electrode assembly was anchored and fixed to the skull with Super-Bond (Sun Medical 

Co., Shiga, Japan) and dental cement. This implantation allows stable and long-lasting 

polygraphic recordings (Parmentier et al., 2002). 

 

Polygraphic recording in the mouse and data acquisition and analysis 

After surgery, the animals were housed individually in transparent barrels (Ø = 20 cm, 

height = 30 cm) placed in an insulated sound-proof recording room maintained at an ambient 

temperature of 23 ± 1°C and on a 12 h light/dark cycle (lights-on at 7 a.m.), standard food and 

water being available ad libitum. A videocamera with infrared and digital time recording 

capabilities was set up in the recording room to observe and score, when necessary, the 

animals’ behavior during the light or dark phase. After a 7-day recovery period, mice were 

habituated to the recording cable for 7 days before polygraphic recordings were started. 

Cortical EEG (contralateral frontoparietal leads) and EMG signals were amplified, digitized 

with a resolution of 256 and 128 Hz, respectively, and computed on a CED 1401 Plus 

(Cambridge, UK). Using a Spike2 script and with the assistance of spectral analysis using the 

fast Fourier transform, polygraphic records were visually scored by 30-sec epochs for 

wakefulness (W), slow wave sleep (SWS), and paradoxical or rapid eye movement (REM) 
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sleep according to previously described criteria validated for mice (Valatx, 1971; Valatx and 

Bugat 1974, Parmentier et al., 2002). Direct REM sleep onset (DREMs) episodes, also called 

narcoleptic episodes or sleep onset REM periods by some authors (Chemilli et al., 1999; 

Mignot, 2005; Fujiki et al., 2006), were defined as the occurrence of REM sleep directly from 

W, namely a REM episode that follows directly a wake episode lasting more than 60 sec 

without being preceded by any cortical slow activity of more that 5 sec during the 60 sec. 

To assess changes in the qualitative aspects of W following different drug treatments, 

200 consecutive cortical EEG samples of 30 sec were extracted from the identified waking 

state 30 min after drug dosing. Analysis of EEG power spectral density was then performed 

within the 0.8-60 Hz frequency range using a fast Fourier transform routine. On the basis of 

visual and spectral analysis, samples containing artifacts occurring during active waking (with 

large movements) or immediately before or after other vigilance states (SWS, REMs or 

DREMs) were identified and omitted from the spectral analysis. Data were collapsed in 0.4 

Hz bins. The power densities obtained during waking were summed over the 0.8-60 Hz 

frequency band (total power). To standardize the data, all power spectral densities at the 

different frequency ranges (e.g., δ 0.8-3 Hz, θ 4-10 Hz, α 10-15 Hz, β 20-30 Hz and γ 30-60 

Hz) were expressed as a percentage relative to the total power of the same epochs (e.g. power 

in the fast rhythm ranges (β + γ 20-60 Hz) / total power (0.8-60 Hz) = relative power in 20-60 

Hz). 

 

Drug administration and experimental procedures in the mouse 

After recovery from the surgery and habituation to the recording cables, each mouse 

was subjected to a recording session of two continuous days, beginning at 7 a.m. During these 

periods, the animals were left undisturbed to obtain baseline parameters on the cortical EEG, 

sleep-wake cycle and circadian rhythm. After baseline recordings, animals were subjected to 
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cortical EEG and sleep-wake recordings following administration of either a placebo (vehicle) 

or tiprolisant and/or modafinil. The vehicle consisted of 0.05 ml of NaCl at 0.9% containing 

methylcellulose at 1%. The doses used were 20 mg/kg for tiprolisant and 64 mg/kg for 

modafinil because of their equal potency in wake duration, as established during a pilot study. 

Drugs were dissolved in the vehicle, fresh before each administration, and were administered 

orally using a mouse gavage probe (20G, Phymep, Paris). All administrations were performed 

at 6.45 p.m. just before lights-off (7.00 p.m.), because orexin-/- mice display narcoleptic 

attacks only during lights-off phase (Chemilli et al., 1999 and our pilot study) and therefore 

this period is adequate for detecting any narcoleptic effect. The order of administration was 

randomized. Polygraphic recordings were made immediately after administration and were 

maintained during the whole lights-off period (12h). Two administrations were separated by a 

period of 7 days (washout). 

 

Neurochemistry in the mouse 

WT and orexin-/- mice received drugs orally between 7.30 p.m. and 8.30 p.m. (dark 

period). They were decapitated 90 min after dosing. Blood was collected on heparin and 

stored at + 4°C before centrifugation (12,000 rpm, 20 min, + 4°C) to obtain plasma. Brain 

tissues were removed out, weighed and immediately frozen in liquid nitrogen. Plasma and 

tissues were stored at -80°C until analysis. Whole brain tissues were homogenized in 10 

volumes (w/v) of ice-cold 0.4 N perchloric acid with 2.7 mM EDTA. The clear supernatant 

obtained after centrifugation (2,000 x g, 30 min, + 4°C) was stored at -80°C before measuring 

tele-methylhistamine (t-MeHA) by enzymoimmunoassay (Ligneau et al., 1998), monoamines 

and their metabolites by high performance liquid chromatography (HPLC) coupled to 

electrochemical detection (Ligneau et al., 2007) and drug levels by LC-MS/MS. 
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Tiprolisant and modafinil assays in the mouse 

Plasma and tissue supernatants samples were extracted using 1 ml Oasis HLB SPE 

cartridges (Waters, Saint-Quentin-en-Yvelines, France) preconditioned with 0.5 ml of 

methanol, followed by 0.5 ml of water. Half a milliliter of the processed sample was pulled 

through the cartridge before washing with 0.5 ml of 5% methanol in water and elution with 

0.25 ml of methanol. The methanolic eluant was dried at 43°C under vacuum, and the dried 

residue was reconstituted with 100 µl of the LC mobile phase, and an aliquot of 20 µl was 

injected into the LC-MS/MS system (Waters), a Quattro Micro system equipped with an 

Alliance 2795 pump and an electro-spray ionization (ESI) interface. The chromatographic 

separation was carried out on a X-Terra MS C18 reversed phase column (1.5 x 100 mm, 3.5 

µm, Waters) with a binary mobile phase (0.02% trifluoroacetic acid in water) in gradient 

conditions (5-65% of acetonitrile in 6.5 min). The flow (0.6 ml/min) was split 1:3 and 

introduced into the ESI source. Argon was used as collision gas at collision energies of 30 eV 

for tiprolisant, 15 eV for modafinil and 35 eV for BF4.947 (i.e. (4[4-(2-fluorophenyl) 

piperazin-1-yl] butyl)-2-naphtalenecarboxamide) used as internal standard (IS). Ions of m/z 

296.1, 296 and 406.3 corresponding to the protonated molecules of tiprolisant, modafinil and 

IS, respectively, were selected as precursor ions. Peak area ratios of tiprolisant/IS or 

modafinil/IS over an effective calibration range of 1 to 100 ng/ml (with a limit of 

quantification of 1 ng/ml) were used to determine tiprolisant and modafinil levels. 

 

Patients 

Twenty-two adult patients (14 men and 8 women) diagnosed with narcolepsy, 

comprising 21 with clear-cut cataplexy, were included in the study. Inclusion criteria for 

narcolepsy were the presence of EDS and of, at least, two direct onsets on REM sleep from 

wakefulness (DREMs) and a mean sleep latency of less than 8 min during the multiple sleep 
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latency tests (MSLT) in accordance with the ICSD-2 criteria (The International Classification 

of Sleep Disorders, 2005). At the time of study, all patients had persistent EDS (recurrent 

sleep attacks almost daily for at least 3 months), in some cases despite their treatment with 

modafinil or methylphenidate (12 patients, i.e. 54.5%). The remaining 10 patients had no 

treatment, although they suffered from moderate to severe somnolence and attacks of 

cataplexy. One of them also presented an obstructive sleep apnea syndrome that has been well 

controlled by continuous positive air pressure for several years. An ESS – a well-validated 

auto-questionnaire – with a score below 10 at baseline was an exclusion criterion. All patients 

were recruited from the sleep medicine practices of the 4 participating centers. 

 

Design of the clinical study 

Experiments were undertaken with the understanding and written consent of each 

patient; the protocol was approved by the Ethics Committee of Lyon (France) and was in 

compliance with national legislation and the Code of Ethical Principles for Medical Research 

Involving Human Subjects of the World Medical Association (Declaration of Helsinki). 

This study was a pilot, prospective, comparative, sequential placebo-controlled, single-

blind, multi-center study of a fixed dose of tiprolisant. All stimulant treatments were stopped 

at least three days before inclusion. In contrast, stable dose of anticataplectic medication for at 

least 3 months was tolerated (except tricyclic antidepressants, which were stopped before the 

study, since they display histamine H1 receptor antagonist activity and entail possible drug 

interaction with tiprolisant). Such medication (mainly venlafaxine) was taken by 8 patients, 

i.e. 36.3%. Other medications such as central hypertensive drugs, codeine and 

dextropropoxyphen were forbidden. 
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Following the completion of screening procedures, patients received once a day, for one 

week, capsules of placebo, followed, on the next week by capsules containing 40 mg of 

tiprolisant taken in the morning, approximately 1 hour after awakening.  

Study assessments were conducted during visits at baseline and at the end of weeks 1 

and 2. Sleepiness assessed using the ESS (Johns, 1991) was the principal endpoint of the 

study. A sleep diary was used to record the number and duration of sleep episodes during the 

night and day and the global clinical impression of change was also completed. A plasma 

dosage of tiprolisant was performed 3 hours after the morning intake at the last visit. Adverse 

events were collected throughout the study. Investigators rated the severity and the 

relationship of each event to study medication or placebo. Safety measures included clinical 

laboratory tests (hematology and blood chemistry), vital signs, 12-lead ECG, and physical 

examinations conducted at study visits. 

 

Chemicals 

Drugs were expressed as equivalent of base. Their sources were as follows: tiprolisant 

[1-{3-[3-(4-chlorophenyl)propoxy]propyl}piperidine, hydrochloride] (Ligneau et al., 2007a 

and b) and BF30 [1-[3-(4-chlorophenyl)propyl]-4-phenylpiperazine, hydrochloride] were 

provided by Pr Schunack (Free University, Berlin, Germany) and Interquim (Barcelona, 

Spain), their synthesis will be described elsewhere. Modafinil [(diphenyl-methyl) sulphinyl-2-

acetamide] was either synthesized in the Bioprojet-Biotech laboratory or obtained from 

Cephalon (Modiadal®, Paris, France). Dopamine, DOPAC, noradrenaline, MHPG (4-

hydroxy-3-methoxy-phenylglycol), t-MeHA, were from Sigma (Isle d’Abeau, France). All 

other chemicals were obtained from commercial sources and were of the highest purity 

available. 
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Statistical analysis 

In the animal study, statistics were performed using ANOVA followed by the 

appropriate post-hoc test as indicated in the legends of Figures 1 and 2. In the patient study, 

the principal endpoint was changes in the ESS score at the end of each week and secondary 

endpoints were number of diurnal somnolence episodes on the patient's diary, total nocturnal 

sleep time and global opinion of the investigators. Each patient acted as his/her own control. 

All analyses were performed on the intention-to-treat population, including all the 22 patients 

enrolled. One patient had to discontinue tiprolisant treatment after 3 days and was excluded 

from the efficacy analysis. The t-tests, which compared the variables measured during the 

tiprolisant period versus the placebo period, were performed on the paired data, only when 

both values were available. 

 

Results 

Tiprolisant enhances histaminergic and noradrenergic neuron activity in orexin-/- mice 

In orexin-/- mice, HA neuron activity during the lights-off period (or dark phase during 

which rodents are active) was assessed by measuring the cortical level of tele-methyl 

histamine (t-MeHA), a major extracellular metabolite of HA. t-MeHA was slightly but not 

significantly decreased as compared to wild-type (WT) mice but nearly doubled upon 

treatment with tiprolisant at a supramaximal dose, as was the case in WT mice (Figure 1a). 

Modafinil, a drug currently used to decrease EDS in narcolepsy (Mignot and Nishino, 2005; 

Dauvilliers et al., 2007), enhanced t-MeHA levels to a lower extent (42%) but, when 

associated to tiprolisant, the effect of the H3 receptor inverse agonist was strongly enhanced 

(216% activation in orexin-/- mice). Noradrenergic neuron activity, assessed by the 4-

hydroxy-3-methoxy-phenylglycol/noradrenaline (MHPG/NA) ratio, was also slightly but not 

significantly decreased in orexin-/- mice and activated by tiprolisant in both WT and orexin-/- 
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mice (43% and 22%, respectively). Modafinil alone did not modify noradrenergic activity, but 

enhanced the tiprolisant-elicited activation in both WT and orexin-/- mice (86 % and 121%, 

respectively; Figure 1b). Tiprolisant did not affect cortical dopaminergic activity, assessed by 

the dihydroxyphenyl acetic acid/dopamine (DOPAC/DA) ratio, or its decrease elicited by 

modafinil (Figure 1c); neither did it affect cortical serotoninergic activity, assessed by 5-

hydroxyindoleacetate/serotonine ratio (not shown). The apparently synergistic interactions 

between modafinil and tiprolisant did not result from changes in their plasma or brain 

pharmacokinetics since tiprolisant levels were unaffected and modafinil levels in plasma and 

brain were, actually, decreased by 18% and 49%, respectively (Figure 1d). 

 

Tiprolisant enhances wakefulness and cortical arousal, decreases DREM episodes and 

synergizes with modafinil in orexin-/- mice. 

During the lights-off period, both tiprolisant and modafinil markedly enhanced 

wakefulness at the expense of slow wave sleep (SWS) and REM sleep (Figure 2A). However, 

unlike that of modafinil, the awakening effect of tiprolisant was characterized by an 

enhancement of cortical arousal, as revealed by the spectral analysis of the 

electroencephalogram (EEG) during waking (Figure 2B-C). Indeed, cortical fast θ activity (7-

10 Hz) and fast rhythms (β and γ ranges, 20-60 Hz), both known to occur notably during 

exploration, attention or other cognitive activities, were enhanced markedly after tiprolisant, 

but not modafinil dosing (Figure 2C). In addition, whereas both tiprolisant and modafinil 

decreased total REM sleep, only tiprolisant considerably decreased both the number and 

duration of DREMs episodes (Figure 2D, E), mostly during the early hours after dosing. 

Associating tiprolisant to modafinil resulted in a markedly enhanced and qualitatively 

modified action of the former on several aspects (Figure 2A-E). Firstly, there was an 

enhanced promotion of wakefulness, with a nearly total suppression of SWS and REM sleep 

 13

H
A

L author m
anuscript    inserm

-00215993, version 1
H

A
L author m

anuscript    inserm
-00215993, version 1

H
A

L author m
anuscript    inserm

-00215993, version 1



during 3-6 h (Figure 2A, D). Moreover, there was not only an amplification of the 

enhancement of fast θ activity and fast rhythms observed with tiprolisant alone, but also a 

qualitative change manifested by a decrease in the slow component of the EEG (in the fast δ 

and slow θ ranges, namely 2-7 Hz, see Figure 2B-C) during waking. Finally, the peak 

frequency of EEG power in θ activity was moved from 6.5 Hz, seen with the vehicle or either 

drug administered alone, to 7.0 Hz seen with tiprolisant and modafinil association (Figure 

2B). These effects, which did not occur with either drug administered alone, indicates a potent 

and enhanced cortical activation with suppression of cortical EEG signs of somnolence and 

drowsiness. 

 

Tiprolisant improves EDS in narcoleptic patients 

Demographic, clinical characteristics and current symptomatology are shown in Table 1. 

All patients presented persistent sleepiness at baseline (in some cases despite treatments), with 

an ESS above or equal to 10 (max 24). One patient complained of moderate headaches and 

rebound of cataplectic attacks after stopping clomipramine and methylphenidate treatments; 

this patient was under tiprolisant for 3 days when she discontinued the trial. Therefore, 21 

patients completed the study. 

We observed significant differences regarding the EDS with the medication as 

compared to placebo. Whereas the mean ESS score (± S.D.) during the placebo period (16.55 

± 4.86) did not significantly differ from the ESS score at inclusion (17.55 ± 3.89), the score 

under tiprolisant treatment (11.81 ± 6.11) showed a 4.86 ± 5.12 point reduction [95% CI: 

2.22, 7.56] when compared to placebo (p=0.0006) and a 5.86 ± 5.51 point reduction [95% CI: 

3.42, 8.34] when compared to baseline (p<0.0001) (Figure 3a). Besides, 9 patients were 

normalized (ESS < 11). The mean of total numbers of diurnal sleep episodes was significantly 

reduced between placebo (14.32 ± 9.54) and tiprolisant period (9.99 ± 9.45), a difference of 
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4.36 [95% CI: 3.35, 5.37] episodes per week (p<0.001, Figure 3c). This effect became larger 

along with time of tiprolisant treatment (2.0 ± 2.1 episodes recorded on day 1 vs. 0.3 ± 1.0 on 

day 7, p=0.0046), whereas corresponding values did not change under placebo (1.9 ± 2.1 and 

1.7 ± 2.2 on days 1 and 7, respectively), suggesting a delay in reaching the maximum effect of 

tiprolisant on this parameter (Figure 3b). The total nocturnal sleep duration was slightly 

reduced, although not significantly, between placebo and tiprolisant periods (8.0 ± 1.7 h/night 

vs. 7.5 ± 2.0). The number and duration of wake-up episodes after sleep onset (WASO) did 

not significantly differ between the two periods, in spite of a tendency to increase (Figure 3d-

f). The global opinion of the investigators on efficacy was significantly better after the 

tiprolisant period (moderate or good efficacy at 68.2%) than after placebo (moderate or good 

efficacy at 9.1% only) (p=0.0002). 

Tiprolisant dosages were performed at the end of the treatment period with a median 

sampling time at 3.75 h after the last drug intake. The plasma level average was 100.6 ± 78.1 

ng/ml (n=17). Elevated plasma levels (> 150 ng/ml) were observed in 5 patients, in some 

cases related to the experience of adverse events occurring a few hours after drug intake. 

No serious adverse event was noted during the study; 11 patients experienced 23 

adverse events during tiprolisant treatment as compared to 7 patients experiencing 13 adverse 

events during placebo treatment. Among the 22 patients, the most frequent adverse events 

during the tiprolisant period were headache (n=5), nausea (n=4), insomnia (n=2), malaise 

(n=2) and sweating (n=2). The majority (95%) of adverse events occurred during the first 3 

days of treatment. Seven adverse events rated severe occurred in 6 patients during tiprolisant 

period (and two under the placebo period), six of them likely or very likely related to the 

tiprolisant treatment, i.e. insomnia (n=2), malaise sensation (n=2), nausea (n=1) and 

hallucination (n=1). None of these adverse events led to treatment cessation and 21/22 

patients fully complied with the prescribed treatments. However, one patient reduced the 
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dosage of tiprolisant from 40 mg/day to 10 mg/day because of adverse events such as mild 

auditory hallucinations without hypnagogic or hypnopompic characteristics, insomnia and 

malaise, which then disappeared with the dose reduction and another patient stopped the 

treatment the day before the exit visit with the investigator. Finally, there were no differences 

among placebo and medication in clinical laboratory test results, vital signs, 12-lead 

electrocardiogram (ECG) or physical examinations. 

 

Discussion 

We have explored here for the first time, through preclinical and clinical studies, the 

potential utility of a novel class of psychotropic agents, the inverse agonists of the histamine 

(HA) H3-receptor, in the treatment of EDS in narcolepsy. This exploration was based upon 

the assumption that HA neurons are not defective and can still be activated by these agents in 

this pathology. 

We found that, during the dark (active) period, the baseline activity of these neurons, as 

well as that of noradrenergic and serotoninergic neurons assessed by neurochemical markers 

(Figure 1 and Results) was not significantly reduced in the brain of orexin-/-mice as compared 

with those of WT mice. Similarly, H3-receptor mRNA levels in the hypothalamus, cortex and 

hippocampus were not modified in orexin-/-mice (our unpublished data). This was rather 

unexpected because orexin neurons project onto the nuclei of origin of these wake-promoting 

neurons, upon which the neuropeptides exert excitatory actions (Bayer et al., 2001; Brown et 

al.,2001; Eriksson et al.,2001; Bourgin et al.,2000; Sutcliffe and de Lecea, 2002). 

Nevertheless, MHPG/NA ratios seem normal in the autopsied brain of patients with 

narcolepsy (Kish et al.,1992). A decrease in the tissue HA content in the Doberman dog’s 

brain was, however, reported (Nishino et al.,2001) but this animal model of narcolepsy differs 
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from the present one, and changes in neurotransmitter storage pools cannot be readily 

interpreted in terms of changes in neuronal activity. 

The H3-receptor inverse agonist was able to enhance HA and noradrenaline release to 

approximately the same extent in orexin-/-mice as in their WT counterparts, suggesting that 

the two ascending waking systems can be stimulated in this narcolepsy model. Activation of 

HA release by H3-receptor inverse agonists is well evidenced (Arrang et al.,1987; Morisset et 

al.,2000) and activation of noradrenergic neurons may result from excitation of locus 

coeruleus neurons by locally-released HA acting via postsynaptic H1- and H2-receptors 

(Bouthenet et al.,1988; Pillot et al.,2002; Korotkova et al.,2005) or, alternatively, blockade of 

presynaptic H3-heteroreceptors regulating noradrenaline release (Schlicker et al.,1992; Pillot 

et al.,2002). 

Modafinil, a currently-prescribed wake-promoting drug with distinct mechanisms of 

action from those of H3 receptor inverse agonists (Parmentier et al.,2007), was used for 

comparison and co-administration with tripolisant. We found that modafinil enhanced t-

MeHA levels to a lesser extent than tiprolisant and that it did not significantly affect 

MHPG/NA ratio. Similarly, modafinil-induced waking was accompanied with c-fos labeling 

in the tuberomammillary nucleus but not the locus coeruleus in rats (Scammell et al.,2000) 

and its arousal-promoting action did not involve the presynaptic noradrenergic system in cats 

and mice (Lin et al.,1992; Wisor and Eriksson, 2005). Nevertheless, the change in t-MeHA 

was of modest amplitude and the wake-promoting effect of modafinil is unaffected in mice 

KO for the gene of the HA-synthesizing enzyme (Parmentier et al.,2007). 

Interestingly, we evidenced a strong synergy between tiprolisant and modafinil 

regarding the activation of the histaminergic and noradrenergic systems; this was clearly 

independent of any pharmacokinetic drug interaction (see “Results”). The wake-promoting 

effect of modafinil does not depend on the HA-mediated transmission (Parmentier et 
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al.,2007). Hence, it would activate histaminergic neurons in a way distinct from that of 

tiprolisant. Modafinil reduces the outflow of GABA in the posterior hypothalamus 

(Tanganelli et al., 1995; Ferraro et al.,1996), thereby diminishing a major inhibitory input 

from the anterior hypothalamus to the tuberomammillary neurons (Sherin et al.,1998), 

whereas tiprolisant reverses the constitutive activity of the H3-receptors, i.e. of a potent 

“brake” on HA release (Morisset et al.,2000). In turn, the synergy between the two drugs on 

noradrenergic neurons may simply reflect the enhanced HA release resulting from their 

association. It should be underlined that tiprolisant activates not only histaminergic and 

noradrenergic neurons but also other ascending wake-promoting systems projecting to cortical 

areas, i.e. cholinergic and dopaminergic neurons (Ligneau et al.,2007a and b). 

Both tiprolisant and modafinil enhanced wakefulness during the lights-off (active) 

period in orexin-/-mice, as is observed in WT rodents (Scammell et al.,2000; Parmentier et 

al.,2007; Ligneau et al.,2007b) and cats (Lin et al.,1992; Ligneau et al.,1998,2007a). 

However, in orexin-/-mice, the action of tiprolisant clearly differed from that of modafinil. 

These mice display direct transitions from wakefulness to REM sleep (DREMs), the only 

characteristic narcoleptic phenotype identified so far in the mouse using objective EEG and 

EMG recordings. Chemelli et al. (1999) proposed that these episodes could correspond to 

cataplectic episodes in narcoleptic patients, this interpretation was, however, challenged 

(Siegel, 1999). Whereas both drugs attenuated almost equally SWS and, even more, REM 

sleep, only tiprolisant significantly decreased DREMs episodes. In agreement, modafinil does 

not affect cataplexy in narcoleptic patients (Billiard et al.,2006), whereas another H3-receptor 

antagonist was recently described to decrease cataplexy in Doberman dogs (Bonaventure et 

al.,2007) with no effect reported on wakefulness. Interestingly, we found here that combining 

tiprolisant to modafinil led to an almost total disappearance of SWS, REM sleep and DREMs 

episodes, an encouraging finding for their association in clinical practice. 
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We propose that the unique effect of the H3-receptor inverse agonist on DREMs, as 

opposed to modafinil, as well as the striking synergy of their association, are related to their 

noradrenaline-releasing effect, not observed with modafinil alone. In agreement, 

noradrenergic neurons cease to discharge for an extended period during REM sleep, as well as 

during cataplectic episodes (Wu et al.,1999), and antidepressants with a preference towards 

the noradrenaline transporter display anti-cataplectic activity in patients (Baumann et 

al.,2005; Mignot and Nishino, 2005; Dauvilliers et al.,2007). Alternatively, the enhanced 

activation of histaminergic neurons with tiprolisant alone or, even more in association with 

modafinil, suppresses DREMs as histaminergic neurons also become silent during REM sleep 

(Vanni-Mercier et al.,2003; Takahashi et al.,2006) and abolition of HA-synthesis increases 

REM sleep (Parmentier et al.,2002). 

One additional interesting observation with tiprolisant alone or, even more in association 

with modafinil, was the shift in the spectral distribution of cortical EEG power density toward 

high frequencies during waking (Figure 2b,c). It may reflect the procognitive efficacy of these 

drugs on higher functions such as attention or learning (Ligneau et al,1998,2007a and b, 

Parmentier et al,2007), a property of potential therapeutic interest since narcoleptic patients 

often complain of deficits in attention and memory (Dauvilliers et al.,2007). 

Starting from this promising preclinical data, a pilot trial with a simple design was 

undertaken to preliminarily assess the potential of tiprolisant in alleviating EDS in narcoleptic 

patients. This is the first clinical trial with any H3-receptor inverse agonist. 

The trial consisted of a comparative, placebo-controlled, single-blind study in which 

patients received placebo on the first week and on the second week, a single dose of the drug 

(40 mg/day), a dosage based upon previous pharmacokinetic data, EEG recordings and 

attention test results in healthy volunteers (to be published). For safety reasons, patients were 

allowed to continue their anticataplectic treatments with antidepressants, which did not allow 
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assessment of the effect of tiprolisant on cataplexy (that would have been difficult, anyway, in 

such a short trial). This simple design allowed rapid recruitment, as patients’ participation was 

only two weeks, all of them being sure to receive the active compound (although they were 

not informed on the treatment sequence). 

This phase II study, although performed on a small population (n=22 patients), showed a 

statistically-significant improvement of EDS with tiprolisant in comparison to placebo, of a 

magnitude suggesting its clinical significance. We may also emphasize that a major 

proportion of these patients (54.5%) were severely affected with EDS, despite their previous 

treatments with modafinil or methylphenidate. All the measures of EDS studied were 

consistent with this improvement: ESS score, number and duration of diurnal sleep episodes 

and somnolence, and investigators' opinion on drug efficacy. The reduction of somnolence of 

5.9 points on the ESS, as compared to baseline, appears equivalent to the results obtained 

after several months of treatment with modafinil (Baumann et al.,2005; Mignot and Nishino, 

2005; Dauvilliers et al.,2007) and somewhat superior to the effect of sodium oxybate (Black 

and Houghton, 2006). Furthermore, somnolence and sleepiness episodes recorded in the 

patients’ diaries progressively decreased and were almost suppressed at the end of the week, 

suggesting that tiprolisant required several days to achieve optimal efficacy, presumably in 

relationship with the 4-5 day delay to reach steady-state drug plasma levels as shown in 

healthy volunteers.  

The drug was considered safe on the studied population. The overall frequency of 

adverse events was higher during the tiprolisant period (50% of patients) in comparison to the 

placebo period (31.8%). The most frequent adverse events were headache, nausea, insomnia, 

experienced mainly during the first three days of treatment. The most severe adverse events, 

i.e. insomnia and fainting sensation, probably related to an overdose of tiprolisant, given here 
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in fixed dosage, could be substantially reduced, in future studies, by using an individual 

titration regimen and starting with a low dose of the drug. 

For the sake of simplification, our pilot study did not measure sleepiness by more 

technical tools such as the maintenance of wakefulness test (MWT), often used to confirm the 

results of subjective measures performed in the patient’s environment, i.e. ESS or sleep 

diaries. However MWT is correlated to ESS (Baumann et al.,2005; Mignot and Nishino, 

2005; Dauvilliers et al.,2007) and this test, performed under artificial conditions, after a night 

hospitalisation, may not be representative of the patient’s usual life conditions. The effect of 

the drug on cataplexy, hypnagogic hallucinations and sleep paralysis was not measured in this 

short study as the use of anticataplectic drugs was permitted. 

In summary, both preclinical and clinical data indicate that an H3-receptor inverse 

agonist (tiprolisant) constitutes a novel effective treatment of EDS in narcolepsy. Tiprolisant 

at the dose of 40 mg per day appears to be efficient in treating EDS of narcoleptic patents and 

to be well tolerated. These results need to be confirmed in larger populations and by using an 

optimized dosage and a double-blind design. The hypothesis that H3-receptor inverse agonists 

alone, or even more in association with modafinil, improve not only excessive daytime 

sleepiness but also other symptoms of narcolepsy such as cataplexy, remains to be scrutinized 

in appropriate clinical trials. 
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TABLE A, Characteristics of patients (n=22) at inclusion 

 

Age (years, mean ± SD)                                               41.6 ± 13.2 

BMI (kg/m2, mean ± SD)                                                     28.1 ± 6.3 

Sex (M/F)                                                                             14/8 

Duration of narcolepsy (years)                                              17.2 

Need for daily nap (%)                                                          100 

Presence of cataplexy attacks at baseline (%)                    95.5 

Presence of hypnagogic hallucinations at baseline (%) 81.8 

Presence of sleep paralysis at baseline (%)            45.5 

Presence of nocturnal sleep disruption at baseline (%) 50.0 

Epworth sleepiness scale score (mean ± SD)              17.5 ± 3.9 
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Legends to figures 

Figure 1 

Effects of tiprolisant and/or modafinil on indices of cortical aminergic neuron activity 

in WT and orexin-/- mice during the lights-off period. Tiprolisant (20 mg/kg) and/or 

modafinil (64 mg/kg) were administered orally to WT or orexin-/- mice between 7.30 p.m. 

and 8.30 p.m. (lights-off at 7.00 p.m.) and sacrificed 90 min later. Effects on t-MeHA level 

(a), MHPG/NA ratio (b) and DOPAC/DA ratio (c) in cerebral cortex. In (d), tiprolisant and 

modafinil concentrations in plasma and brain, determined by HPLC/MS, are depicted,  

indicating that the interactions observed between the effects of the two drugs are not 

attributable to pharmacokinetic factors. (A significant ANOVA followed by a post-hoc PLSD 

Fisher test indicates: * p<0.05, ** p<0.01, *** p<0.001 denoting significant differences 

versus corresponding saline-treated group; £ p<0.05, ££ p<0.01 denoting significant 

differences between modafinil treated group and combination-treated group; # p<0.05, # # 

p<0.01 denoting significant differences between tiprolisant- and combination-treated groups. 

For catecholamines, n = 6-13 and 4-7 and for t-MeHA and drugs levels, n = 14-21 and 4-7 in 

WT and KO groups, respectively). 
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Figure 2 

Effects of tiprolisant and/or modafinil on sleep-wake cycles, cortical EEG and 

narcoleptic episodes in orexin-/-mice. Tiprolisant (20 mg/kg) and/or modafinil (64 mg/kg) 

were given just before lights-off at 7.00 p.m. Quantitative/qualitative analyses of subsequent 

sleep-wake parameters are shown: (A) representative examples of hypnograms showing the 

sleep-wake cycle of a KO mouse from 1h before to 6h after lights-off; (B) mean spectral 

distribution of cortical EEG power density during waking; data obtained by pooling 200 

consecutive 30-sec wake epochs from each animal after drug administration using the fast 

Fourier transform routine within the 0.8-60 Hz frequency range. (C) compared drug effects on 

cortical EEG mean power (± S.E.M.) at frequency ranges of 2-7 (including fast δ and slow θ 

components), 7-10 (fast θ activity) and 20-60 Hz (fast rhythms); (D) mean duration (± 

S.E.M.) of sleep-wake stages and direct REM sleep onset periods (DREMs, defined as a 

direct transition from waking to REM sleep) during a 3h recording and (E) mean cumulative 

number (± S.E.M.) of DREMs episodes during a recording period of 0-6h after compound 

administrations. Note that 1) DREMs episodes occurred during lights-off (A, D, E) in the 

orexin-/-mouse; 2) both tiprolisant and modafinil enhanced waking (W) and decreased both 

slow wave sleep (SWS) and rapid eye movement (REM) sleep (A, D); 3) tiprolisant, but not 

modafinil, enhanced cortical fast θ (7-10 Hz) and fast rhythms (20-60 Hz), an effect amplified 

by co-administration with modafinil (B, C); 4) only co-administration of tiprolisant and 

modafinil decreased slow activities (2-7 Hz, B and C) and increased the peak frequency of 

EEG power in θ activity, i.e., from 6.5 to 7 Hz (C); 5) Tiprolisant reduced DREMs episodes 

(duration and number) whereas modafinil allowed them to persist (A, D, E); and 6) co-

administration of tiprolisant and modafinil resulted in a greater increase in waking and totally 

suppressed DREMs episodes (A, D, E). (* p<0.05, ** p<0.01; Dunnett's t test after significant 

ANOVA, n=12 mice). 
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Figure 3 

Changes in Epworth sleepiness scale (ESS) scores, diurnal episodes of sleep and 

nocturnal sleep in narcoleptic patients receiving placebo and tiprolisant. Twenty-two patients 

orally received a placebo and 40 mg tiprolisant successively and treatment-blinded, once a 

day, for one week. The sleepiness was scored according to the ESS scale at baseline and at the 

end of the placebo- and tiprolisant-treatment weeks (a). The patients filled in a diary in which 

they daily reported the number and duration of diurnal episodes of somnolence and sleep (b), 

nocturnal sleep duration and number and duration of wake-up episodes after sleep onset 

(WASO) (d). In (c) and (e), the weekly total of these values are reported. (n.s. p>0.05, * 

p=0.05, ** p<0.0001). 
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