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Abstract 

 

Protein structures are classically described as composed of two regular states, the α-

helices and the β-strands and one non-regular and variable state, the coil. Nonetheless, this 

simple definition of secondary structures hides numerous limitations. In fact, the rules for 

secondary structure assignment are complex. Thus, numerous assignment methods based on 

different criteria have emerged leading to heterogeneous and diverging results. In the same 

way, 3 states may over-simplify the description of protein structure; 50% of all residues, i.e., 

the coil, are not genuinely described even when it encompass precise local protein structures. 

Description of local protein structures have hence focused on the elaboration of complete sets 

of small prototypes or “structural alphabets”, able to analyze local protein structures and to 

approximate every part of the protein backbone. They have also been used to predict the 

protein backbone conformation and in ab initio / de novo methods. In this paper, we review 

different approaches towards the description of local structures, mainly through their 

description in terms of secondary structures and in terms of structural alphabets. We provide 

some insights into their potential applications. 

 

Introduction 

 

Protein folds are often described as a succession of secondary structures. Their 

repetitive parts (α-helices and β-strands) have been intensively analyzed since their initial 

description by Pauling and Corey [1]. Nonetheless, this description of the 3D structures in 

terms of secondary structures is not simple and different major drawbacks must be carefully 

addressed. Indeed, the rules for secondary structure assignments are not trivial, and so 

numerous assignment methods based on different criteria have emerged. The greatest 

discrepancies are found mainly at the caps of the repetitive structures. These small differences 
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can result in different lengths for the repetitive structures, depending on the algorithm used. In 

addition, a classification of the backbone conformation limited to 3 states (the classical 

repetitive secondary structures and coils) does not precisely describe the protein structures, 

because it fails to describe the relative orientation of connecting regions. Besides, the coil 

state covering almost 50% of all residues corresponds to a large set of distinct local protein 

structures. 

Thus, to circumvent these difficulties, other approaches were developed. They led to a 

new view of 3D protein structures which are now thought to be composed of a combination of 

small local structures or fragments, also called prototypes. A given complete set of prototypes 

defines a “structural alphabet.” Different groups described these local protein structures 

according to different criteria. Structural alphabets have been used to approximate and 

analyze local protein structures and to predict backbone conformation. 

This paper is divided in two parts. First, we focus on the detailed analysis of known 

secondary structures with respect to the different secondary structure assignment methods. 

Second, we present the complete panorama of known structural alphabets, i.e., libraries of 

protein local structures used in ab initio methods. 

Thus, we present in the Secondary structure section the classical and less represented 

repetitive structures, the irregularities within these structures, the different kinds of turns, the 

Polyproline II and the loops. We focus on the problematic issue of secondary structure 

assignment and conclude on the step from secondary structure to 3D. The Structural 

alphabets section shows firstly the structural libraries dedicated to the structure 

approximation, secondly the different developed prediction methods based on structural 

alphabet description and finally some applications. 
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Secondary structures 

 

Introduction. The description of protein structures in terms of secondary structures is 

widely used for analysis or prediction purposes (see the example of Human Liver Glycogen 

Phosphorylase A [2] taken from the Protein DataBank [3] in Figure (1)). The secondary 

structures are composed of well-known α-helix [4] and β-sheet [5]. Secondary structure 

assignment is directly implemented in all 3D structure visualization softwares (e.g. Rasmol 

[6], molmol [7] or VMD [8]) which helps for the analysis of the protein scaffold. They are 

also used as the basis of classification of protein structures like in SCOP [9] and CATH [10] 

databases. Since precise modeling of the structure of a protein remains a challenge, the 

prediction of secondary structures is an important research area [11] and has been included in 

many sophisticated prediction methods, like threading [12] or de novo approaches [13, 14]. 

 

Figure 1. Example of analysis of a protein structure fragment (Human Liver Glycogen 
Phosphorylase A [2], Protein DataBank [3] code 1EXV, residues from 400 to 500) described 
by secondary structures. We can observe a long α-helix (residue 400 – 417), a Polyproline II 
(438 -440), π-helix (489-494) and β-sheet (452-454 and 479-481). 
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Classical secondary structures. Before the first protein structure was solved [15], 

Pauling and Corey have proposed many stable local protein structures [1, 4, 5], including two 

major local folds: (i) the α-helix (or 3.613 helix) characterized by intramolecular hydrogen 

bonds between amino acid residues i and i +4 and (ii) the β-sheet composed of extended 

chains with hydrogen bonds between adjacent chains. They roughly represent 1/3rd and 1/5th 

of the residues found in proteins. Long and short α-helices do not have the same amino acid 

composition according to Richardson and Richardson [16] and Pal and co-workers [17]. α-

helices extremities have specific amino acid propensities [18-22] and specific 

physicochemical stabilizations [23]. For instance, C-capping motifs of α-helices are often 

stabilized by hydrophobic interactions between helical residues and residues outside the 

repetitive structures [24], e.g. the Pro C-capping motif [25]. For instance, helix 9, the major 

structural element in the C-terminal region of class Alpha glutathione transferases (GSTs), 

forms part of the active site of these enzymes where its dynamic properties modulate both 

catalytic and binding functions. The importance of the conserved aspartic acid N-capping 

motif for helix 9 was identified by Dirr and co-workers using sequence alignments of the C-

terminal regions of class GSTs and in silico approaches [26, 27]. Indeed, the replacement of 

N-cap residue Asp-209 destabilizes the complete region. 

A β-sheet is formed by the association of several β-strands via hydrogen bonds between 

residues from two distinct strands [5]. Thus, a fundamental difference between the two main 

regular secondary structures, α-helices and β-sheets, is the non-local nature of hydrogen 

bonds: partners can be far from each other in the sequence space. Depending on the strand 

orientation, a β-sheet can be parallel, anti-parallel or mixed, resulting in different hydrogen-

bonded patterns [28]. This kind of planar arrangement introduces a periodicity in the side-

chain orientation: side-chains point alternatively toward one side and the other side of the 

sheet. As for the α-helix, the sequence specificity of β-strands has been widely studied [29], 
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as well as the terminal residues of strands [30]. Nonetheless, the experimental [31-33], or 

statistical works on pair correlation [34, 35] have not given simple conclusion to analyses the 

specificity of pair interaction between neighboring residues of adjacent β-strands. The β-sheet 

assembly is more complex than simple pair complementarities [28, 36]. 

A consequence of this difference is the more complex aspect of β-sheet formation and 

our weakest understanding of the underlying mechanism [37]. Synthetic peptide 

combinatorial libraries arose as a source of new lead compounds [38]. Combinatorial libraries 

of genes provided new proteins or protein domains [39] and peptide libraries built on α-

helical scaffolds appeared as a useful strategy for the identification of new antimicrobial and 

catalytic synthetic α-helical peptides [40]. On the other hand, the construction of peptides 

libraries that fold as β-sheet structures is more recent [41]. This is mainly due to the scarcity 

of data and incomplete understanding of the factors determining formation of such secondary 

structure motifs [36, 42]. For the last three decades, more than a thousand secondary structure 

prediction methods have been elaborated from the early statistical approach [43-46] to 

complex Artificial Neural Networks and hidden Markov Model [47-51]. 

 

Other repetitive structures. 310- and π-helices are less frequent helical states 

representing coarsely 4% and 0.02% of the residues in proteins. The 310-helix is characterized 

by intramolecular hydrogen bonds between amino acid residues i and i+3 [52-54]. Majority of 

310-helices are short, containing three (one-turn) or four residues but two-turn and longer 310-

helices have been reported [53]. They are commonly found at termini of α-helices [55, 56] 

and act as connectors between two α-helices [54, 56] and their sequence content is different 

from α-helix [57]. An analysis of sequence and structural features of 310-helix adjoining α-

helix and β-strand has recently been done. It shows that composites of 310-helices and β-

strands are much more conserved among members in families of homologous structures than 
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those between two types of helices; often, the 310-helix constitutes the loops in β-hairpin or β-

β-corner motifs [58]. 

In the π-helix (i.e., 4.416-helices) hydrogen bonds are formed between amino acid 

residues i and i +5. This helix conformation is less stable due to steric constraints [59-62]. 

Fodje et. al. [63] showed that π-helix would occur more frequently in protein structures that 

was previously described and would be conserved within functionally related proteins. 

Weaver found in 8 out of 10 confirmed crystal structures which contained π-helices, that its 

unique conformation was directly linked to the formation or stabilization of a specific binding 

site within the protein [64]. A dynamic relationship would exist between the different kinds of 

helices as shown for instance between α– and π–helices [65]. 310-helices, and to a lesser 

extent π-helices, have been proposed to be intermediates in the folding/unfolding of α-helices 

[66-68]. 

Since the description of β-strands, several analyses have shown that a strand can be 

found independently of a β-sheet, i.e. the isolated E-strand [69]. These isolated E-strands are 

clearly distinct from classical β-strands involved in β-sheets: (i) they exhibit particular 

sequence specificity, as for example an over-representation of Proline residues and (ii) they 

display high solvent exposure in the structures. Hence, the isolated strands are related to loops 

but with an extended geometry. Due to the low occurrences of these different states, the 

number of prediction methods dedicated to them is very limited. We could note the method 

SSPRO8 that performs reasonably well [49]. 

 

Irregularities in repetitive structures. The π-bulges form a particular kind of 

discontinuity in helical structures. Like the π-helices [64], they are not frequently observed 

but they seem to be directly associated to protein function [70]. For instance, Erb2 protein 

transmembrane domain has been shown, using molecular dynamics approaches [71-73], to 
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display a transition state from an α-helix to a π-bulge motif, and this has further been 

confirmed by experimental approaches [74]. The π-bulge is also named α-aneurism as this 

structural motif was revealed in an insertion mutant of staphylococcal nuclease [75]. Since 

then, other cases have been found, e.g. Plasmodium falciparum 1-Cys peroxiredoxin [76] or 

µ-opioid receptor [77]. 

In the same way, most of the observed α-helices are distorted due to presence of proline 

residues [78, 79], solvent induced distortions [80] or peptide bond distortions [81]. Due to 

these local modifications, the three dimensional path of a α-helix often becomes non-linear 

[82]. Barlow and Thornton found in their set only 15% of linear helices, 17% were kinked and 

58% curved [56]. These conclusions were confirmed by Kumar and Bansal with an enlarged 

dataset [83] and very recently by Martin and co-workers [84]. Bansal and co-workers have 

analyzed [85] and developed specific a software to classify the helices and showed again that 

important proportion are in fact curved or composed of two (or more) distinct helices [86]. 

A β-bulge is defined as a region between two consecutive β-type hydrogen bonds, which 

includes two or more residues on one strand opposite a single residue on the other strand [87, 

88]. Found primarily in anti-parallel β-sheets, β-bulges are common, on average twice per 

protein [89]. These irregularities were first classified by Richardson and co-workers into two 

types [87] and later in five classes by Thornton [89].  

The extra residue(s) on the bulged strand not only disrupts the normal alternation of side 

chain direction, but also impacts the directionality of β- strands and accentuates the typical 

right-handed twist of β-sheets. For these reasons, β-bulges are often well conserved in 

proteins. Their role is not clear; they may facilitate insertions or deletions in β-strands or 

position crucial residues by accentuating the local twist of the strands [90, 91], as it has been 

shown with insertions and deletions in a β-bulge region of Escherichia coli dihydrofolate 

reductase [91] and ubiquitin [92]. As they are more exposed than other  β-strands residues, 
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they play an important role in protein–protein interaction and in protein function [93, 94] and 

have been suggested to be associated with some pathologies, like the aggregation of proteins 

into a fibrillar structure  in the case of several neurodegenerative disorders [95]. However, the 

underlying molecular basis for the formation of β- bulges in proteins remains poorly 

understood. 

 

Turns. Regions connecting repetitive helical and extended structures, known as loops, 

have been extensively studied for the last decades. However, their classification is difficult to 

achieve namely for loop regions composed of more than 8 residues [96-99] where more 

precise descriptions are needed to encompass their whole diversity.  

Alongside the helices and the strands, turns are perhaps one of the most interesting local 

fold. By definition, turns are small elements of secondary structure. They are constituted of n 

consecutive residues (denoted i to i+n) with a distance between Cα(s) of residues i and i+n 

that has to be smaller than 7 Å (or 7.5 Å depending on the authors). The tight turns are 

composed of γ-turns (n = 3), β-turns (n = 4), α-turns (n = 5) and π-turns (n = 6). The 

restrictive distance of 7 Å imply a particular geometry to the backbone which can therefore 

turn back on itself or more generally change of direction. As they orient α-helices and β-

strands, they play a major role for the final protein topology. In order to not mix up with α-

helices (which can be obviously considered as a succession of turns), the central residues of 

turns have to not be helical, e.g. residues i+1 and i+2 for the β-turns. Often, hydrogen bonds 

between the N-H of residue i and the C=O of residue i+n-1 stabilize the turn structure. Turns 

are classified into types according to the values of dihedral angles φ and ψ of the central 

residues. For the β- and α- turns, a deviation of ± 30° from these canonical values is allowed 

on 3 of these angles while the fourth can deviate of ± 45° [100].  

The two most studied turns are the γ- (3 residues) and the β-turns (4 residues). The γ- 
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turns are composed of two categories, classic and inverse (see Table 1) [101-105]. The β-

turns as defined by Venkatachalam are characterized by a hydrogen bond between N-H and 

C=O of residues i and i+3 and types I, II, III, and their corresponding mirror images I’, II’ and 

III’ were characterized [106]. These results have been confirmed with a limited set of proteins 

[107, 108]. Lewis enlarged this definition to several new categories: the β-turns V and V’, the 

β-turn VI  which is characterized by the presence of a Proline, the β-turn VII which is 

associated with a kink and the β-turn IV corresponding to all the non classified β-turns [109]. 

The very first documented analyses of turns in protein structures used this classification 

scheme [110-114]. However different turns have been excluded since then. The β-turns III 

and III’ are too close to the 310-helix, the turns V, V’ and VII are too rare and their definitions 

are inaccurate [100]. On the other hand, type VI were divided into 2 sub-types, that is, VIa 

and VIb. Lastly, Venkatachalam also noticed that some distorted type I β-turns have their φi+2 

in the β-strand region (instead of α). Later, Wilmot and Thornton precisely defined type VIII 

[115] which is basically based on Richardson’s type Ib. Finally, Hutchinson and Thornton 

[116] divided type VIa in 2 sub-types VIa1 and VIa2. The definitions used by Thornton’s 

group [89, 117] are nowadays considered as the standard (see Table 1). They are widely 

analyzed in molecular dynamics [118] and prediction methods have been developed [119-

126]. Motifs and conformational analysis of amino acid residues adjoining β-turns in proteins 

have also been extensively described [127].  

So, γ- and β-turns are the most important secondary structures following the α-helix and 

β-sheet. β-turns correspond roughly to 25 to 30% of the residues [128]. An interesting point is 

that they are often observed as repeated tandems leading sometimes to long series of γβ, βγ, 

ββ or γγ turns [129]. It is also noteworthy that γ and β turns are found associated to the same 

residues [130, 131]. 
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γ-turna  φi+1       ψi+1          

Classic 75.00 -64.00     

Inverse -79.00 69.00     

       

β-turnb  φi+1       ψi+1      φi+2   ψi+2     

I -60.00 -30.00 -90.00 0.00   

I’ 60.00 30.00 90.00 0.00   

II -60.00 120.00 80.00 0.00   

II’ 60.00 -120.00 -80.00 0.00   

III obsolete   

III’ obsolete   

IVc ---- ---- ---- ----   

V obsolete   

VIa1d -60.00 120.00 -90.00 0.00   

VIa2d -120.00 -120.00 -60.00 0.00   

VIbd -135.00 135.00 -75.00 160.00   

VII obsolete   

VIII -60.00 -30.00 -120.00 120.00   

       

α-turnb  φi+1       ψi+1      φi+2   ψi+2   φi+3 ψi+3 

I RS -60.00 -29.00 -72.00 -29.00 -96.00 -20.00 

I LS 48.00 42.00 67.00 33.00 70.00 32.00 

II RS -59.00 129.00 88.00 -16.00 -91.00 -32.00 

II LS 53.00 -137.00 -95.00 81.00 57.00 38.00 

I RU 59.00 -157.00 -67.00 -29.00 -68.00 -39.00 

I LU -61.00 158.00 64.00 37.00 62.00 39.00 

II RU 54.00 39.00 67.00 -5.00 -125.00 -34.00 

II LU -65.00 -20.00 -90.00 16.00 86.00 37.00 

I C -103.00 143.00 -85.00 2.00 -54.00 -39.00 
 

Table 1. Values of dihedral angles of γ-turns [105], β-turns [117] and α-turns [134]. 

a  Allowed angles variations: +/- 40 °. 
b Allowed angles variations: +/- 30 ° for the angles with at most one angle allows to deviate by +/- 45°. 
c Turns which do not fit any of the above criteria are classified as type IV. 
d Types VIa1, VIa2 and VIb are characterized by a cis-proline (i+2). 

 

Shorter turns (e.g. 2 residues δ-turns) [132] and longer ones (e.g. 5 residues α-turns 
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[133-135] and 6 residues π-turns [136]) have been less studied. Only the α-turns has been the 

object of a classification scheme (see Table 1) [134]. α-turns have a functional role in 

molecular recognition and protein folding. For instance, residues in the α-turn in protein 

human lysozyme participate in a cluster of hydrogen bonds, and are located in the active site 

cleft, suggesting the possibility of a functional role [137]. Some are also involved in metal ion 

coordination [138, 139]. Moreover, α-turns are also relevant structural domains in small 

peptides, particularly in cyclopeptides containing 7–9 residues in their sequence [140-142]. 

Recently, a very elegant classification of α-turns has been proposed and the analysis of 

sequence – structure correspondence has highlighted the potential implication of α-turns in 

helix folding [143]. 

 

Polyproline II. The Polyproline II (PII) helices correspond to a specific local fold first 

discovered in fibrous proteins [144-146]. They contribute to the creation of coiled coil 

supersecondary structures characteristic of these fibrous proteins but are also found in 

numerous globular proteins. Because of their characteristic backbone angles and trans isomers 

peptide bonds, PII helix is a left-handed helical structure with an overall shape resembling a 

triangular prism. It is extended, with a helical pitch of 9.3 Å / turn, 3 residues per turn. This α-

helical conformation is characterized by canonical values of φ around -75 ° and ψ around 

+145°, i.e. characteristic dihedral angle values of β-strands. There has recently been an 

increase of interest in PII conformations [147-151], especially in the field of molecular 

dynamics [148, 152-154]. Even if they are called polyproline, they are not only composed of 

Proline successions and some PII helices have no Proline at all [155-159] like short stretches 

of poly-glutamines [160]. Adzhubei and Sternberg [155] found 96 PII helices in a databank of 

80 proteins. This was thought to be unexpectedly common. They found that these PII helices 

were highly solvent-exposed and tended to have high crystallographic temperature factors. PII 
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are not stabilized by salt bridges [161]. It was suggested that PII helices are often stabilized by 

main-chain-water hydrogen bonds (in the absence of main-chain-main-chain H-bonds), and 

tend to have a regular pattern of hydrogen bonds with water [162]. They are, however, still 

much less solvent-accessible than experimentally studied peptides. Stapley and Creamer [157] 

additionally suggested that local side-chain to main-chain hydrogen bonds are important in 

stabilizing PII helices. Cubellis and co-workers recently highlighted that PII helices are 

stabilized by non-local interactions [150]. They do not display strong sequence propensities in 

contrast with other extended conformations, such as β-strands [163]. The non-local 

stabilization of hydrogen-bond donors and acceptors does, however, result in PPII 

conformations being well suited for participating in protein-protein interactions. They  are 

suspected to be implicated in amyloid formation [164, 165] and nucleic acid binding [166]. 

As recently highlighted, actual molecular dynamics parameters seem to underestimate the 

polyproline II and so diminish its frequencies [167]. 

 

Loops. Even after classification of protein backbone using classical three-states 

described above, many residues are still associated to the coil states (i.e., nearly half of the 

residues). Several studies have hence focused on distinct conformation subsets of loops 

linking specific secondary structures. There are of 4 distinct loop classes (α-α, α-β, β-α and 

β-β) [168] and most of the studies focused on loops of less than 9 residues. 

The β-hairpins correspond to loops connecting two adjacent antiparallel strands. They 

have been widely analyzed since they are widespread in globular proteins. Different classes 

have been identified resulting in the definition of structural families [169-172]. Interestingly, 

the short length hairpins are often characterized by a specific turn, i.e., a quick return of the 

protein backbone [173], like a β-turn [174]. Sometimes, stabilization by disulfide bonds are 

observed [175]. Characteristic sequence patterns have also been highlighted, e.g. in 
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erythropoietin receptor agonist peptides [176], and used to aid loop homology modelling 

[177]. The β-hairpins have been well studied in molecular dynamics [178, 179]. Other types 

of motifs connecting two β-strands have also been analyzed like the β-β corners [173]. 

Orthogonal ββ motifs, i.e. consecutive strands forming an ‘L’ structure with an angle of 90°, 

have been identified [173, 180]. These motifs are often associated with particular types of 

loops making the connection.  

α-α turn motifs, and corners, in proteins have also been described in detail [181, 182]. 

A recent study showed that two predominant linking backbone conformations are observed 

for a given short link length and some linking backbone conformations correlate strongly with 

distinctive inter-helical geometric parameters [183]. Wintjens and co-workers [184] presented 

an automatic classification procedure of protein short fragments and described ten α−α turn 

families that tend to exhibit some conserved sequence features. As for α-β and β-α loops, 

preferred conformations have also been found [96, 185, 186]. 

Other interesting local structures, less frequent than the turns have also been described in 

the coil state. For instance, the Ω-loops constitute a particular category characterized by a 

small distance between their extremities and an important number of contacts in their 

structure [187-189]. They correspond to compact globular loops mainly located at the surface 

of the proteins [190]. They may be directly associated with protein function [191-195] and 

folding [192]. An important number of studies focused on the cytochrome c and the use of 

compatible Ω-loops to replace existing local 3D conformations [191, 196-198]. These studies 

have to be viewed as complementary to investigations on closed loops, Tight End Fragment 

(TEF) and MIR (Most Interacting Residues) which define loop fragments that are able in 

three-dimensional (3D) space to nearly close their ends [199-201]. These fragments are not 

only composed of residues associated to coil residues but also with regular secondary 

structures [202]. 
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Loops within protein families have been extensively analyzed with respect to their role 

in the stabilization of proteins [104]. Tramontano and Lesk used rmsd (root mean square 

deviation) criteria to describe structural determinants of the conformations of medium-sized 

loops in proteins and focus on immunoglobulins [203, 204]. This early lead already 

highlighted the difficulty to analyze long length loops. Complete classifications have been 

attempted only for short and medium size loops due to the low occurrences of longer loops 

and to their larger variability. For instance, Rice and co-workers showed the example of a 

helix – turn – strand motif found in α-β proteins that was well characterized in short loops, 

but not in longer loops due to the absence of local constraints [205]. 

Ring and co-workers [206] are the only one to propose a classification scheme for 

loops based on their linearity and planarity defining three categories, named linear strap loops, 

the non-linear and planar omega loops (not to be confused with the Ω-loops), and the non-

linear and non-planar zeta loops. Their databank was composed of 432 loops. Interestingly, 

they proposed for the longest loops to categorize them in a forth category defined as any 

combination of the first three ones. They used their analysis to propose a prediction approach 

based on genetic algorithms named Bloop [207]. 

Sun and Jiang have used a non – redundant databank of 240 proteins with a resolution 

of less than 2.5 Å, focusing on loops of length from one to five [208]. The classification is 

based on a clustering of the phi-psi space into zones and 34 classes of supersecondary motifs 

occurring at least five times have been identified, most of them were commonly occurring 

supersecondary structure motifs. 

In Sloop, elaborated by Donate and co-workers [209, 210], loops were classified 

according to their length (from one to eight residues), the type of bounding secondary 

structures and the conformation of the main chain. The clustering was performed thanks to a 

hierarchical clustering based on rmsd distance between the loops. Thus, 161 well populated 
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conformational classes were determined, and further grouped into families. For each 

conformational class, amino acid sequence preferences were identified. Residues located in 

highly conserved positions were shown to be mainly involved in the stabilization of the loop 

conformation or to be associated with specific functions, new classes included a 2:4 type IV 

hairpin, a helix-capping loop, and a loop that mediates dinucleotide-binding [210]. Their 

databank comprises 2,024 loops taken from 223 proteins (resolution < 2.7 Å). An approach 

for loop prediction was further proposed based on the identification of preferred loop 

conformational classes in the databank [211]. For every query, the procedure consisted in 

identifying among the 161 conformational classes, those that were compatible in terms of 

sequence preferences and disposition of bounding secondary structures. Further prediction 

was performed with a new evaluation dataset that comprises 1,785 loops extracted from 138 

new proteins that share less than 35% of identity sequence with the initial set of proteins. 

Updates of this databank of supersecondary fragments were then performed, with a 

considerable increase in the number of conformational classes amounting 560 well populated 

categories with loops up to 20 residues in length [212, 213]. 

Geetha and Munson [214, 215] used a set of 330 proteins sharing less than 45% of 

sequence identity and a resolution better than 2.25 Å. The clustering algorithm proceeded 

with the use of two criteria: Cα distance within the loop fragments and dihedral angles of the 

protein backbone. They analyzed 3,313 loops of length two to eight, highlighting for instance 

the orthogonal architecture of the α-class proteins. They described new clusters and new 

relationship between sequences and structures. 

Wloop is an interesting approach developed since 1996 by Chomilier and his group 

[216] that proposes taxonomy of the loops. Wloop proceeds by clustering loops of three to 

eight residues in length. Loops of the same length were placed in a common reference frame 

and classified within families of similar three-dimensional structures. The dataset used was 
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composed of 243 proteins sharing less than 50% of sequence identity. Contrarily to most of 

the known loop classification procedures, the clustering methodology does not rely on the 

nature of the neighbouring secondary structures. In total, 1,586 loops were grouped into 183 

clusters. Sequence and conformational signatures were then deduced. The loop taxonomy 

differentiates clusters, relying on the mean distance between the first and last alpha carbon 

and the distance to the centre of gravity of the cluster. The database was then extended to 

13,563 loops extracted from 1,411 protein structures sharing less than 50% sequence identity 

[97]. Using this new classification scheme, a prediction was performed using a new 

evaluation dataset of 47 and 48 entries sharing respectively a redundancy inferior and superior 

to 95% with the PDB. The Wloop web service has recently been upgraded to facilitate the 

newly implemented prediction scheme [217]. 

Wintjens and co-workers used a two-step methodology to define their loop clusters 

[96, 184]. The first step consisted in clustering the loop fragments according to zones within 

Ramachandran maps. In second instance, the loops within each class were superimposed to 

evaluate the quality of the clusters. A cluster was split if rmsd values exceeded a fixed 

threshold. From a dataset of 141 proteins sharing less than 20% sequence identity, they 

analyzed 15 αβ and 15 βα kinds of loops [96]. Previously, they had characterized 10 αα 

categories of loops. They focused on the most occurring clusters. This databank was used by 

Boutonnet and co-workers to characterize αββ and ββα supersecondary structures [98]. 

ArchDB is from Oliva and co-workers [218]. They analyzed 3005 loops coming from 

a non-redundant databank of 283 proteins sharing less than 25% of sequence identity and 

classified them into five major types according to their flanking secondary structures: α-α, β-

β links, β-β hairpins, α-β and β-α. The clustering algorithm, based on both the loop main-

chain dihedral angles and the geometry of the bracing secondary structures, generated 56 

classes that were further subdivided into 121 sub-classes. Consensus sequences were then 
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derived. The clustering procedure was then improved and fully automated resulting in 

ArchDB database [219]. In addition, updates enabled the inclusion of clusters for many long 

loops. ArchDB was to provide functional information. So, they have used this approach to 

classify the loops obtained from a set of 141 protein structures classified as kinases. A total of 

1813 loops were classified into 133 subclasses (9 ββ links, 15 ββ hairpins, 31 αα, 46 αβ and 

32 βα). Functional information and specific features relating subclasses and function were 

included in the classification. Functional loops were classified into structural motifs e.g. the 

P-loop shared by different folds. Hence a common mechanism for catalysis and substrate 

binding was sustained for most kinases [220]. ArchDB has also been used in prediction 

process with excellent results [221], the dataset used was based on SCOP 40 of the 1.61 

SCOP release [9]. A recent application of such an approach has found more than 500 new 

putative function-related motifs not reported in PROSITE [222]. 

Li et al. [223] developed a database of loops extracted from a set of homologous 

proteins taken from FSSP database [224] where the structures had a resolution better than 2.5 

Å. In their study, loops were grouped into families when they had well-superimposed 

bounding secondary structures. They used a hierarchical average linkage cluster analysis, 

which resulted in 84 loop families of 2 to 13 residues long. Subfamilies were generated and 

sequence features were characterized. This work enabled them to observe the diversity of 

loops on specific protein frameworks. 

The “Loops In Proteins” (LIP) database that was developed by Michalsky and co-

workers [225] is based on a non-redundant protein databank (sharing less than 20% of 

sequence identity) of excellent resolution (less than 1.8 Å). It included all protein segments 

ranging from 1 to 15 residues in length contained in the Protein Data Bank, which amounts to 

about 108. This database was used for loop prediction in the framework of homology 

modelling. The prediction strategy consisted in efficiently selecting loop candidates from the 
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database and in ranking them. The main-chain atoms of the top-scoring loop candidates were 

chosen as templates. Accurate prediction results were obtained, particularly for long loops. 

 

Name web address database prediction last update 
Sloop [211] http://www-cryst.bioc.cam.ac.uk/sloop/ yes no 2002 
Archdb [218] http://gurion.imim.es/cgi-bin/archdb/loops.pl yes no 2004 
Wloop [97] http://bioserv.rpbs.jussieu.fr/cgi-bin/WLoop no yes 2006 
 http://psb11.snv.jussieu.fr/wloop/   (obsolete version) 

LIP [225] http://www.drug-redesign.de/LIP/ no no Test set (2003) 
 

Table 2. Web services about protein loops. 

 

Table 2 summarizes the available web services. Nonetheless, it must be noted that the 

major difficulty remains the definition of the regular secondary structure elements since the 

assignment of their boundaries directly defines the loops (see assignment methods section 

below). Similarly, in most of these studies, not all the protein loops were taken into account, 

most of the time some of the low occurring loops were withdrawn. 

 

The assignment methods. Often the secondary structure assignment methods (SSAMs) 

are considered not as a specific problem, the visualization tools doing “naturally” the 

assignment. However as noted by Arthur Lesk in his book [226], “what is unfortunate is that 

people use these secondary structure assignments unquestioningly; perhaps the greatest 

damage the programs do is to create an impression (for which Levitt, Greer, et al., [i.e., 

authors of SSAMs] cannot be blamed) that there is A RIGHT ANSWER. Provided that the 

danger is recognized, such programs can be useful”. Indeed different SSAMs exist. The 

difference between prediction and assignment of true structures is known for a long time 

[227]. However, the difference between secondary structure assignments is less frequently 

highlighted [228]. As noted earlier by Colloc’h and Cohen [30] and Woodcock and co-

workers [229], a serious issue raised by the variety of methods for secondary structure 
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assignment is that they often yield diverging results. Different methodologies also differ in the 

level of detail they offer (i.e., the number of secondary structures they distinguish). Here, in 

the following paragraphs, we describe some of the existing assignment methods. Table 3 

presents a summary of available SSAMs with different number of states that they can assign. 

 

 

The first developed software was proposed by Levitt and Greer and used only the Cα  

positions as these atoms are the best precisely defined by X-ray crystallography [230]. In this 

paper, the authors described another assignment criteria based on torsion angle α and 

hydrogen bonds. They compared their assignments with the available assignment of 33 α-

helices and 25 β-sheets. They highlighted the difficulty to assign precisely the short β-sheets 

with only the use of Cα, so they combined inter Cα distances assignment with H-bond 

assignment. Nowadays, the most widely used approaches are based on the identification of 

hydrogen bond patterns (DSSP [231], DSSPcont [232], SECSTR [63] and STRIDE [233]).  

To date, DSSP (Dictionary of Secondary Structure Protein) [231] is the most popular 

method. In this methodology, secondary structure segments are identified by particular 

hydrogen bond patterns detected from the protein geometry and an electrostatic model. After 

computing all the H-bonds, the algorithm first assigns helical states (with a minimum length 

of four residues, three for the 310 and five for the π-helix) and then the β-sheets (with a 

minimum length of one residue). DSSP assigns eight different types of secondary structure 

including the aperiodic coil. DSSP is the basis of the assignment done by the Protein 

DataBank [3, 234]. Most of the prediction methods use the secondary structure assignment 

performed by DSSP to derive their parameters. 
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Table 3. Different available SSAMs with the states they can assign. 

 

A recent version of DSSP called DSSPcont (Continuous DSSP) was proposed by Rost 

Methods Year Helical state Extended state Coil 

DSSP [231] 1983 α-helix  β-strand  turn 

(DSSPcont [232]) (2001) 310-helix β-bridge  bend 

  π-helix  coil 

DEFINE [82] 1988 α-helix β-strand coil 

PCURVE [247] 1989 α-helix β-strand coil 

Consensus [253] 1992 α-helix β-strand coil 

STRIDE [233] 1995 α-helix β-strand turns 

  310-helix β-bridge  coil 

  π-helix   

PSEA [241] 1997 α-helix β-strand coil 

XTLSSTR [246] 1999 α-helix β-strand h-bonded turn 

  310-helix  un h-bonded turn  

    polyproline II  

    coil 

PROSS [242] 1999 α-helix β-strand coil 

    polyproline II 

STICK [258] 2001 α-helix β-strand coil 

SECSTR [63] 2002 α-helix β-strand coil 

  310-helix   

  π-helix   

VoTap [248] 2004 α-helix β-strand coil 

t-number [250] 2005 α-helix β-strand coil 

KAKSI [84] 2005 α-helix β-strand coil 

Beta-Spider [251] 2005 α-helix (DSSP) β-strand coil 

SEGNO [150] 2005 α-helix β-strand coil 

  310-helix  polyproline II 

  π-helix   

PALSSE [252] 2005 α-helix β-strand coil 

HELANAL [86] 2000 α-helix (5) / / 

EXTENDED-BETA 2002 / β-sheet (5) / 

[259]   β-strand  

PROMOTIF [117] 1996 α-helix β-strand γ-turn (2) 
   β-bulge (10) β-turn (10) 
    β-hairpins 
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[232]. It is based on the principle that any discrete assignment is incomplete, because the 

continuum of thermal fluctuations cannot be simply described. Hence, a continuous 

assignment of secondary structure that replaces 'static' by 'dynamic' states is used similarly to 

NMR studies which have emphasised the importance of structural changes over multiple 

length and time scales. Protein structure determination by NMR spectroscopy finds many 

models, the ensemble that is consistent with experimental constraints. The variations between 

these models result partially from experimental inconsistencies and incomplete data sets, but 

they are also believed to result partially from intrinsic fluctuations. Thus, DSSPcont 

assignments are obtained as weighted averages over ten DSSP assignments with different 

hydrogen bond thresholds. The continuous DSSP assignments calculated from a single set of 

coordinates may reflect the structural variations due to thermal fluctuations. The goal is to 

compensate at best the fluctuations of the assignment between the different models [232, 235-

237]. 

SECSTR is an evolution of DSSP method. As crystallographers do not find correctly 

existing π-helices [238, 239], Fodje and Al-Karadaghi developed improved π-helices 

detection parameters. In particular, the hierarchy of detection was modified in order to focus 

on the correct assignment of 310 and π-helices [63]. This method logically assigns more π-

helices than others (10 times more than DSSP). 

STRIDE [233] is also a widely-used method. It was done because DSSP often assigns 

too short helices. The principle of STRIDE is identical to DSSP but also takes into account 

dihedral angles. Hydrogen bonds are detected with an empirical energy function. The 

different parameters have been optimized regarding the definition of helices and strands in 

PDB files. The number of distinct states in this method is seven (including aperiodic), the 

bend defined by DSSP is here associated to classical turns. Its assignment is really close to the 

one done by DSSP (95% of identity). The differences are due to confusion between α-helices 
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and coil (1%) and to confusion between β-strand and coil (4%) [99].  

PROMOTIF derives also from DSSP approach (an unpublished software called 

SSTRUC [240]) but focus on the characterization of γ- and β-turns, β-hairpins and β-bulges 

[117]. It uses the detection of repetitive structure reading the remarks of PDB files and when 

none is available, it supplies it using an assignment done by SSTRUC.  

The periodicity of α−helices and β−strands generates some regularity in the backbone 

topology. Hence, some assignment methods do not use the detection of hydrogen bounds, but 

other characteristics of repetitive secondary structures.  

DEFINE method [82], like Levitt’s and Greer’s method, uses only the Cα positions. It 

computes inter-Cα distance matrix and compares it with matrices produced by ideal repetitive 

secondary structures.  

KAKSI is a novel assignment method that uses inter-Cα distances and dihedral angles as 

criteria [84]. Its principle is hierarchical (see Figure (2)). Firstly, the helices are assigned if the 

inter-Cα distances and / or dihedral angles are in a defined range. Secondly, the β-sheets are 

assigned if both inter-Cα distances and dihedral angles are in a defined range. The range of 

allowed inter-Cα distances and dihedral angle patterns have been optimized using the helices 

and sheets found in PDB. KAKSI have some specific features, such as a procedure for kink 

detection in α-helices resulting in the assignment of several distinct short helices instead of a 

long curved one. It is also less affected by the quality of the protein structure resolution. 

Indeed, higher are the resolution values, lower are the secondary structure contents. 
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Figure 2. Principle of KAKSI assignment process. Firstly, α-helices are assigned (1) using 
distance criteria and / or (2) angles criteria. (3) Kinks are then detected. Secondly, the β-
sheets are detected using sliding windows, if both (4) distance criteria and (5) angles criteria 
are within the selected ranges, the two β-strands are assigned. (6) If a α-helix and a β-strand 
are continuous, the α-helix is shortening. 
 

PSEA [241] assigns secondary structures solely from Cα position using distance and 

angles criteria. This approach is also not much sensitive to the quality of the structures as the 

Cα are always the best resolved atoms. It is particularly sensitive with respect to the 

assignment of small β-strands. 

PROSS [242] is based only on the computation of φ and ψ dihedral angles. The 

Ramachandran map is divided into meshes of 30° or 60° and the secondary structures 

(helices, sheet, polyproline II) are assigned according to their successions of encoded mesh. 

This approach has been widely used to analyze the folding of polyproline II [148, 159], the 

continuity between C-terminal end of α-helix and N-terminal end of β-strand [243] or the 

compilation of the coil library, i.e. a convenient repository of all remaining structure after 
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these two regular secondary structure elements [244]. 

A new method called SEGNO [245] uses also the φ and ψ dihedral angles coupled with 

other angles to assign the secondary structures. This method has been used to analyze the 

Polypoline II helix [150]. 

XTLSSTR uses all the backbone atoms to compute two angles and three distances [246]. 

It is especially dedicated to spectroscopy and focus on amide-amide interactions.  

PCURVE methodology [247] is based on the helical parameters of each peptide unit and 

generates a global peptide axis. The global shapes of secondary structures are then taken into 

account. This approach makes use of an extended least-squares minimization procedure to 

yield the optimal helical description where structural irregularities are distributed between 

changes in the orientation of the successive peptide groups and curvature of the overall helical 

axis.  

A recent method uses Voronoï tessellation around Cα positions to compute a contact 

map [248]. It is called VoTap (Voronoï Tessellation Assignment Procedure) and is based on 

the Voro3D software [249]. This geometrical tool associates with each amino acid a Voronoi 

polyhedron, the faces of which define contacts between residues. It permits the distinction 

between strong and normal contacts. This new definition yields new contact matrices, which 

are analyzed and used to assign secondary structures. This assignment is performed in two 

stages. The first one uses contacts between residues along the primary structure and is mainly 

dedicated to local assignment, e.g. helices. The second step focuses on the strand assignment 

and uses contacts between distant residues. 

In the same way, Vaisman and co-workers have developed a simple, five-element 

descriptor, derived from the Delaunay tessellation of a protein structure in a single point per 

residue representation, which can be assigned to each residue in the protein [250]. The 

descriptor characterizes main-chain topology and connectivity in the neighborhood of the 
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residue and does not explicitly depend on putative hydrogen bonds or any geometric 

parameter, including bond length, angles, and areas. 

Beta Spider is the name of an European car of the 70’s but also the name of a SSAM 

[251]. It focuses only on β-sheet (the α-helix assignment is performed by DSSP) and for this 

purpose by considering all the stabilizing forces involved in the β-sheet phenomenon. Thus, 

not only the C=O...H-N hydrogen bonds are considered but also the C=O...C=O electrostatic 

dipoles and bifurcated H-bonds C=O...H-Cα. Beta-Spider also uses some geometrical factors, 

to make sure that the side-chains of the beta-sheet partners are pointing in the same direction. 

Grishin and co-workers have recently developed a new method called PALSSE 

(Predictive Assignment of Linear Secondary Structure Elements) [252]. It delineates 

secondary structure elements from protein Cα  coordinates, and specifically addresses the 

requirements of vector-based protein similarity searches. This program identifies two types of 

secondary structures: α-helix and β-strand, typically those that can be well approximated by 

vectors. In opposition to all the other SSAMs, this approach leads to surprising assignment for 

where a residue can be associated to a α-helix and also to a β-strand. It assigns about 80% of 

the protein chain to regular secondary structure. The authors declared that their method is 

robust to coordinate errors and can be used to define secondary structures elements even in 

poorly refined and low-resolution structures. This method is not dedicated to the analysis of 

protein structure but more to potentially perform a prediction. 

As a consequence, these different assignment methods have generated particular 

problems. For example, DSSP can generate very long helices which do not correspond to the 

reality [56]. It is the main reason why Bansal and co-workers have analyzed and classified the 

helices as linear, curved or kinked [86]. In the same way, Woodcock and co-workers [229] 

noted that these methods do not assign the same state to certain residues, especially those 

located at the beginnings and ends of repetitive structures. This observation has led to the 
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development of a consensus approach [253] which represents an average measure of DSSP, 

DEFINE and PCURVE. This study has shown that less than 2/3 of the residues are associated 

to the same state by these three algorithms. That was one of the motivations of KAKSI 

methodology, i.e. to define linear helices instead of long kinked helices (see L-mandelate 

dehydrogenase [254] in Figure (3)). 

 

 

Figure 3. (a) Assignment of an α-helix of the L-mandelate dehydrogenase [254] (PDB code: 
1P4C) by DSSP. (b) This helix is split in two by KAKSI. 
 

The use of one or another method does not reflect the same type of reality. For instance, 

the α-helix defined by DSSP, with its eight states grouped in only three states, does not 

correspond only to α-helix (3.1613 helix), but incorporates the 310 helix and the π-helix (4.46-

helix) too. In the same way, β-sheets (DSSP ‘E’ state) correspond to β-strands implicated in 

parallel or anti-parallel characteristic patterns but not to isolated Ε-strands. This can induce 

difficulties in analyzing the protein structures or dynamic features.  

A recent study has compared five assignment software (DSSP, STRIDE, DEFINE, 

PCURVE and PSEA) [99]. It used an agreement rate, denoted as C3, which is the proportion 
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of residues associated with the same state between two assignment methods. The results of 

this work clearly highlight three points: (i) DEFINE yielded results very different from the 

other methods, as shown by its C3 values, close to 62%; (ii) DSSP and STRIDE produced 

nearly identical assignments, with C3 equal to 95%; (iii) all the other comparisons gave a 

mean C3 of 80%, with 6–7% confusion between α-helices and coils and 12–13% between β-

strands and coils. In addition, DEFINE was the only method where confusion between α–

helices and β-strands was observed. These results show the difficulties for defining an 

appropriate length for α-helices, β-strands and coils and locating their ends. Another recent 

study has also shown the consequences of this differences on β-turn assignment [255]. 

 

Figure 4. 2D projections of the distance between different SSAMs (adapted from [84, 99, 
256] and unpublished data). 

 

Figure (4) [84, 99, 256] shows a projection of comparison studies between SSAMs. A 

small compact cluster is found; it encompasses all the “DSSP-like” hydrogen bonds related 
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method, i.e. DSSP, STRIDE and SECSTR. Spreading around them are found the other 

methods, i.e. based on different criteria, they have average disagreement rates around 20%. 

DEFINE always remains distinct from all these methods because it over-assigns regular 

secondary structure and, with respect to this, is closer to PALSSE than the other SSAMs. It is 

important to note that the repetitive structures definitions only reflect a given classification 

and can disagree on structure description, especially on the segment extremities and on the 

presence of very short segments.  

 

Figure 5: an example of multiple SSAMs for the beginning of bovine pancreatic 
deoxyribonuclease I protein (PDB code: 1ATN) [257]. 
 

Figures (5) and (6) show an example of multiple SSAMs on bovine pancreatic 

deoxyribonuclease I protein [257]. Figure (5) clearly highlights the variability of the 

assignments even for helices and for sheets. Figure (6) gives a visual representation of 

discrepancies in the various assignments.  
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Figure 6: an example of multiple SSAMs of bovine pancreatic deoxyribonuclease I protein. 
(a) DSSP, (b) DEFINE, (c) P-SEA, (d) P-CURVE, (e) SECSTR, (f) BETA-SPIDER. 
 

 

From SSEs to 3Ds. It is obvious from the above sections that the organization of three-

dimensional proteins structures can be represented as an assembly of different secondary 

structure elements arranged in a particular topology [100, 258] which characterizes a unique 

and particular fold [259]. Several distinct secondary structure combinations, generally 

between 2 and 4, form particular supersecondary motifs that can be found in many different 

folds. Many of them have been well characterized such as the simple β-hairpins [177] or more 

complex associations like triple-strand beta-sheets [186] and Greek key [100, 260]. 

Unfortunately, many folds contain very few or no super-secondary structure, e.g. the knottins 

[261], or contain secondary structure arrangements that are not very frequent in known 

protein structures. 
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Figure 7. The different Protein Units composing the 2aak protein. Are noted the positions of 
the PUs in brackets with their corresponding Compaction Index (CI), an index measuring the 
number of internal contacts [267, 268]. 
 

Since the 80s, many authors have proposed different methods to hierarchically split 

protein structures into small compact units in the aim of describing the different levels of 

protein structure organization [262-264]. The rules used by these methods are quite different. 

To identify compact units, Lesk & Rose described the protein fragments as inertial ellipsoid 

and selected the most compact ones using a progressive growing approach [262]. Method 

proposed by Sowdhamini & Blundell to identify protein domain and supersecondary element 
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was based on Cα-Cα distances between secondary structures [263]. The algorithm developed 

by Tsaï & Nussinov used a complex scoring function, based on compactness, hydrophobicity 

and isolatedness, that measures stability of a candidate building block [264]. Another 

description at an intermediate level of organization, between secondary structures elements 

and domains, called Protein Units (PUs) has recently been proposed [265, 266]. A PU is a 

compact sub-region of the 3D structure corresponding to one sequence fragment. The basic 

principle is that each PU must have a high number of intra-PU contacts, and, a low number of 

inter-PU contacts (see Figure (7)).  

Thus, organization of protein structures can be considered in a hierarchical manner: 

secondary structures are the smallest elements, protein units are intermediate elements leading 

to the structural domains. 

 

Conclusion. Secondary structures are really a powerful tool to analyze the protein 

structures. The number of secondary structure prediction methods incredibly amounts as 

much as one thousand [11], beginning from simple statistical methods [43] to complex 

Artificial Neural Network combined with homology information like PSI-PRED [47] or 

SSPRO [49], that reaches 80% correct prediction. Similarly, 3-states secondary structures 

have been used in threading / fold recognition approach [12] and de novo approach [267]. 

Nonetheless, the assignment rules are not trivial. It is not due to the difficulty to accept a 

common definition with fixed values, but more to classical problem of classification where 

rules must be applied to delimitate the frontier of one class, such as the α-helix, and also the 

intrinsic flexibility of protein structure [268, 269]. This question is crucial and the scientific 

community seems to appreciate it more and more as the number of (and different) point of 

views grows. For instance, 4 different new SSAMs were proposed in 2005 only (KAKSI, 

PALSSE, Delaunay tessellation and Beta-Spider). A very recent elegant example of such 
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interest has been shown by Raveh and co-workers [270]. In a fully unsupervised manner, and 

without assuming any explicit prior knowledge, they were able to rediscover the existence of 

α-helices, parallel and anti-parallel β-sheets and loops, as well as various non-conventional 

hybrid structures. 
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Libraries of local protein structures 

 

Introduction. As we have seen in the previous paragraphs, the secondary structures have 

directed our conception of the protein structure analysis [271]. Nonetheless, the secondary 

structures focus on two kinds of regular local structures that compose only a part of the 

protein backbone. The remaining residues are only assigned if they can be associated with 

some particular structures such as the β-turns. In fact, the secondary structure assignment is 

highly hierarchic. The absence of assignment for an important proportion of the residues has 

lead some scientific teams to develop local protein structure libraries (i) able to approximate 

all (or almost all) the local protein structures and (ii) that do not take into account the classical 

secondary structures. To start with is the precursor lead of Unger and co-workers [272] whose 

work has led to numerous applications, from the reconstruction of protein structures [273] to 

the prediction of short loops [99]. These libraries brought about the categorization of 3D 

structures without any a priori into small prototypes that are specific to local folds found in 

proteins. The complete set of local structure prototypes defines a structural alphabet [274-

276]. The term “structural alphabet” was first introduced by Ring and co-workers to define a 

more precise description of the loops using 3 categories [206]. Numerous structural alphabets 

and names have been defined: Buildings blocks (BBs) for Unger and co-workers [272], Short 

Structural Motifs (SSM) for Unger and Sussman [277], Substructures for Prestrelski and co-

workers [278], Local Structural Motifs (LSMs) for Schuchhardt and co-workers [279], 

Recurrent Local Structural Motifs (RLSMs) for Rooman and co-workers [280], Structural 

Buildings Blocks (SBBs) for Fetrow and co-workers [281], Local Structures (LSs) for Bystroff 

and Baker [267], Short Structural Building Blocks (SSBs or SSBBs) for Camproux and co-

workers [282, 283], oligons for Micheletti and co-workers [284] and Protein Blocks (PBs) for 

de Brevern and co-workers [285]. They differ in the parameters used to describe the protein 

backbone like Cα coordinates, Cα distances, α or dihedral angles and in the methods used to 
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define them such as k-means [286], empirical function, Kohonen Maps [287, 288], artificial 

neural network [289] or Hidden Markov Model [290]. Each structural alphabet or fragment 

library is defined as a series of N prototypes of l residues length. N is highly variable, l only 

varies between 4 and 8. In the following paragraphs, we will present the most important 

works in this area. They are summarized in Table 4. 

History. The increasing number of protein sequences and structures has supported the 

concept of protein evolution through the divergence of the sequences and conservation of 

protein structures and, in some cases, convergence of protein sequences to a common 

structure. The number of related protein sequences has led to the generalization of homology 

modeling with softwares like Modeller [291-293] or Composer [294].  

In 1986, Jones and Thirup reconstructed a retinol-binding protein (RBP) using 

fragments of the main chain from three unrelated proteins leading to a model with a Cα rmsd 

of 1.0 Å from the known structure [295]. It was the first usage of short 3D structural motifs. 

This work has led to the use of known substructures for completing / refining low resolution 

X ray structures and suggested potential use in homology modelling for insertions. In 1989, 

Claessens [296] followed similar approach to rebuild the protein backbone with recurrent 

motifs derived from 66 high resolution structures. The constructed model was built using 

overlapping fragments of variable length. The final model was also less than 1.0 Å Cα rmsd 

deviation compared to crystal structures. Levitt [297] suggested construction of full atom 

models including side chains by pulling fragments from the PDB based on both sequence and 

structure consideration. This strategy is particularly efficient as most of the local protein 

structures are present in the PDB [298], even for the coils. 

 

 

 

 

H
A

L author m
anuscript    inserm

-00175058, version 1



Local Protein Structures (Offmann, Tyagi & de Brevern) 

 36

Team Year Name of library 

Number 

of 

proteins 

Number 

of 

residues 

Learning 

method 
Distance used 

Prototypes 

number 

Prototypes 

length 

Unger et al 1989 
Building 
Blocks 

4 \ 82 
426 \ 12 

973 
k-means rmsd on Cα 103 6 

Rooman et al 1990 
Recurrent 

local structural 
motifs 

75 12 978 
Hierarchical 
clustering 

rmsd on Cα 4 
4, 5, 6 
and 7 

Prestrelski et 
al 

1992 Substructures 14 2 347 Function 
Linear 

distance and 
α angle 

113 8 

Zhang et al 1993 
Structural 
Building 
Blocks 

74 13 114 AutoANN 

Cα distances, 
dihedral and 

valence 
angles 

6 7 

Schuchhardt 
et al 

1996 
Local 

structural 
motifs 

136 24 239 Kohonen map 
Dihedral 
angles 

100 9 

Fetrow et al 1997 
Structural 
Building 
Blocks 

116 23 335 AutoANN 

Cα distances, 
dihedral and 

valence 
angles 

6 7 

Bystroff and 
Baker 

1998 
Local 

Structures 
471 NA k-means 

Sequence 
profiles and 
rmsd / dma 

13 from 82 
(updated to 

16 in 
2000) 

Structure 
: 3 to 15 
Sequence 

: 8 

Camproux et 
al 

1999 

Short 
Structural 
Building 
Blocks 

100 19 137 HMM Cα distances 12 4 

Micheletti et 
al 

2000 Oligons 75 11 086 

Iterative 
clustering by 
removing the 

biggest 
clusters 

rmsd on Cα 
28, 202, 
932 & 2 

561 

4, 5, 6 
and 7 

de Brevern et 
al 

2000 Protein Blocks 342 87 996 

Unsupervised 
classifier 
(~SOM + 
transitions) 

Dihedral 
angles 

16 5 

Kolodony  et 
al 

2002 - 
145 \ 
200 

NA (~5 
000 to 
9 000) 

k-means 
simulated 
annealing 
clustering 

rmsd on Cα 

4 to 14, 10 
to 225,40 
to 300, 50 
to 250 

4, 5, 6 
and 7 

Hunter and 
Subramaniam 

2003 centroids 790 156 643 
Hypercosine 
clustering 

Hypercosine 
Cα 

28 to 16 
336 (28 for 
prediction) 

7 

Camproux et 
al 

2004 SBBs 
250 x 
2 

NA HMM Cα distances 27 4 

De Brevern, 
Etchebest et 

al 

2005 Protein Blocks 1 407 293 507 
New 

evaluation 

Dihedral 
angles 

16 5 

Benros et al 2006 LSP 
675 & 
1 401 

139 503 
&  

251 497 

Hybrid 
Protein 
Model 

PBs and rmsd 
on Cα 

120 11 

Sander et al. 2006 
Structural 

representatives 
1 999 295 411 

Leader 
algorithm and 

k-means 

Cα distance 
matrices 

28 7 

Tung et al. 2007 Kappa-alpha 1 348 225 523 
Nearest-
neighbor 
clustering 

κ and α 
angles 

23 5 
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Table 4. Synopsis of the different available local protein structure libraries or structural 
alphabets. The characteristics of the datasets used, the learning methods and distance criteria 
used are featured as well as total number of prototypes and prototypes lengths. 

 

In fragment based studies two main approaches exists. The first consists in the 

description of an important number of prototypes to reconstruct precisely a protein structure. 

The second aims at predicting the 3D structures directly from the sequence. This last approach 

is only feasible when the number of prototypes is limited. 

 

Prototyping local structures. The first approach in fragment analysis deals with 

approximating known protein folds after construction of a library of structural prototypes. 

Here the number of prototypes, N, is often important, and the higher N is, the finer is the local 

structure description. The different approaches towards the generation of local structure 

libraries and their characteristics are described hereafter. 

 

Building Blocks. The aim of the leading work of Unger and co-workers (1989) was to 

obtain an important number of prototypes, called Building Blocks (BBs) able to rebuild 

protein structures approximated by these BBs [272]. Their method consists in calculating the 

average standard deviation (Cα rmsd) between two structures. After a preliminary calculation 

carried out on 4 proteins (426 residues on the whole), Unger and collaborators decided to 

focus on hexamers which was considered as the smallest prototype length necessary for 

differentiating protein fragments. They conceived a method so-called “of annexation” to 

create fragment clusters based on a fixed threshold of 1 Å. The process was performed in 

iterative refinement steps. At the end, they selected 103 BBs. They showed that 76% of the 

protein fragments were close to one of the BBs with a rmsd less than 1 Å, 92% with less than 

1.25 Å while 65% were close only to one BB (with less than 1 Å) and 5% were close to more 

than 2 blocks (with less than 1 Å). By preserving only fragments having less than 1 Å of 
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difference with reality, 99% of their database was covered. This study gave the true picture of 

how powerful and meaningful these building blocks can be. Not only they represented regular 

secondary structure elements but also the complex motifs which connected helices and strands 

and the random coil regions. 

This precursor work highlighted the difficulty to use rmsd as a simple measure to define 

local structure prototypes. For instance, using 4 other proteins, the method yielded 144 

building blocks. By combining 8 proteins, to the number of prototypes jumped to 170 BBs 

[272]. BBs have also been used coupled with dihedral angles [299]. 
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Figure 8. Representation of the 81 most frequent Building Blocks of Unger and co-workers 
[276]. They are presented from left to right and up to down according to their occurrence. 
 

In 1993, Unger and Sussman proposed to keep only 81 BBs [277] which corresponded 

to fragments that are observed more than 35 times in their database, i.e. a minimal frequency 

of 0,3 %. They also precisely studied the blocks that corresponded to extended strand as 

defined by DSSP [231]. The sequence specificity for structural alphabets was also analyzed in 

terms of a matrix giving the occurrence of amino acid at each position for every alphabet. 

These BBs are available at Ron Unger’s web site: http://faculty.biu.ac.il/~unger/unger.html. 
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Substructures. Prestrelski and collaborators created a library of local structure 

prototypes without any a priori on the type of secondary structures. They wish to use them to 

find structural homologies, in a similar way to that of Jones and Thirup [295], but by 

designing a fixed library of prototypes not specifically conceived for a single protein [278]. 

The method consists in generating small numbers of distinct local structure prototypes. The 

selected criterion for similarity is less traditional than in the preceding work. They worked 

primarily with a description of 4 successive Cα of the polypeptide backbone. The linear 

distance (DL) at a residue i is the sum of the distances Cαi- Cαi+j (with i fixed and j ranging 

from 2 to 4). This criterion makes it possible to differentiate the repetitive structures. It was 

used to observe insertions-deletions in crystallographic structures. However, it has some 

limitations, e.g. it is not possible to differentiate a left propeller from a right propeller. To 

thwart this type of problem, they associated the angle α. To differentiate two protein 

fragments, a performance index dependent on two parameters C1 and C2 were defined using 

tangents of difference on angle α. The maximum value of the difference of the angles α was 

limited to 85°. Moreover, to work on fragments of size higher than 5, a sliding window of 

length 4 was used. They fixed other values to compare the fragments as they focussed on local 

structure prototypes of length 8. When the values of the linear distances are close, the angle α 

could be very different. The complementary use of the two criteria thus seems discriminating.  

The calibration of the two coefficients C1 and C2 was done using ten prototypes of 

propellers, layers and periodic structures. They considered two structures as equivalent when 

rmsd was lower than 1 Å. The method used for groupings is not detailed, but results which 

recapitulate the 30 most frequent blocks are given yielding a set of 113 distinct blocks. As an 

illustration, the second most populated block clustered only 17 fragments. This methodology 

is not very conventional, but was well designed with regard to the limited number of known 

folds at that time [278]. It has been used to propose architecture for a serine protease [300]. 
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Structural Buildings Blocks. Fetrow and co-workers’ obtained and analyzed a limited 

number of local protein structures that are pertinent for protein local structure prediction [301, 

302]. The methodology they have used is more complex than the previous ones. Their 

approach used an auto-associative Artificial Neural Network (autoANN), a particular kind of 

ANN with an output layer with identical dimension to the input layer. AutoANN does not 

perform a classical prediction, but tries to restore the information that it learned. In fact, its 

main interest is the hidden layer that performs a compression of the information (see Figure 

(9)). An autoANN can be considered as equivalent to a classical Sammon Map [303]. 

 

 

Figure 9. Principle of the autoANN used by Fetrow’s group [281, 302]. Each local protein 
structure is encoded as a 43 unit vector (see text), the hidden layer (a 8 unit vector) performed 
the compression step as the output layer is again a 43 unit vector. 

 

Here, the local protein structures are seven residues long and are encoded as distances, 

bond and dihedral angles. One of the difficulties is the coding of these different parameters to 

ensure an unbiased learning. They performed a very elegant normalization of the data as the 
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distances are normalized following the bimodal distribution of Cα distances on two bits, and 

the angles using cosine and sine values. Each local protein structures are then coded as a 43 

unit vector. The databank is learned and in a second step, the coding of each local protein 

structures is performed using only the hidden layer (a 8 unit vector). This new encoding is 

used in a classical k-means clustering approach to determine the mean local structure 

prototypes. The clustering tool generated six local protein structures called Structural 

Building Blocks (SBBs) which correspond to the regular α-helix and β-strand, and to their 

respective N- and C-caps. The different databanks gave highly similar results. Nonetheless, a 

limitation of this approach – probably due to the limited size of the non-redundant protein 

databanks and the length of the local protein structure - was the absence of SBBs related to 

non-repetitive structures. The coding of some protein structures using these SBBs is available 

at http://www.cs.albany.edu/compbio/. 

The study of amino acid frequencies in the SBBs showed clear preference for amino 

acids at specific positions and were consistent with known amino acid preferences in the case 

of helical regions. Importance of these structures was highlighted in loop modelling. Rooman 

et al [304] have already emphasized on the importance of the recurrent local structure motifs 

over secondary structure classification and on the relationship between structure and amino 

acid sequence. A complementary work was performed by Fetrow and Berg who showed that 

the use of local protein structure can reveal different distributions of rotamers classes [305]. 

 

Local Structural Motifs. In 1996, Schuchhardt and co-workers [279] used Self 

Organizing Map (SOM) developed by Kohonen [287, 288] to perform unsupervised 

classification of local structure prototypes. Contrarily to the previous studies, they did not use 

3D coordinates as the direct information, but the dihedral angular values (φ and ϕ). The 

obtained map was of size 10 x 10 defining 100 local structure prototypes. Each motif was 
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constituted by a set of 16 angular values (φ and ϕ, i.e. 9 residues) representing most common 

structures found. Because of the learning method (SOM), the network was expectedly well 

spread out in two regions with one belonging to helices and the other to strands. The 

neighbouring regions gave variation on these regular structures and the in-between cells 

represented the various transition structures like helix-strand, helix-loop, helix-loop-helix, 

strand-turn-strand and other coil regions. It was suggested that this information can be used to 

distinguish between two structures and can give more insight to sequence-structure 

relationship. As an example, a neuron with over-representation of Glycine in its central 

position was shown. 

Even though the length of the prototype is important and use of dihedral angles distance 

(called rmsda for root mean square deviation on angular values) discussed, the final choice of 

an important number of prototypes allows a fine discretization of the protein space. The only 

simple improvement that could have been done easily with this approach would have been to 

use a non planar map. A toroïd map does not have limitations during the diffusion step. A 

comparison between these two approaches has shown that the standard deviation of each 

neurons decrease [306]. 

 

Oligons. Micheletti et al. [284] did similar studies to construct library of recurrent 

oligomers in proteins which they called oligons. Micheletti's team used an iterative approach 

and computed every rmsd between every fragments of their databank. Their approach (i) 

creates clusters of local folds based on the distribution of rmsd, (ii) searches for the most 

populated cluster, (iii) selects it as an oligon, (iv) eliminates the fragments associated with it 

from the analysis, and then (v) returns backwards to step (i). Hence, it creates a hierarchy in 

the cluster definition: the first is more important than those that follow. The interest of their 

approach is to propose an increasing number of local structure prototypes, coming from the 
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most classical repetitive to the lowest occurring local structures. Moreover, they tested 

different lengths from 3 to 10 residues. They concluded that for any meaningful classification 

of fragments, the lengths should be between four and six residues. The coordinates of local 

protein structures of different libraries are available at 

http://www.sissa.it/~michelet/prot/repset/index.html. 

They also performed an approximation of the 3D structures by reconstructing the 

protein structures from the oligons with very correct results on a dataset of 10 proteins. The 

optimization was performed using a classical Monte Carlo approach. The importance of the 

length of oligons was clearly highlighted, i.e. to ensure a similar 3D approximation for a 

longer length, the number of local structure prototypes must be significantly higher. The 

results of the sequence – structure relationship analysis is more difficult to evaluate as the 

number of occurrences in the dataset is low. 

 

Librairies. Michael Levitt’s work is one of the most established and precise work in 

this field. Moreover, he had proposed an interesting index called “complexity index” that 

gives an average number of states per residue and allows comparing different sets of local 

structure prototypes with different lengths. Park and Levitt [307] and Kolodony et al. [308] 

have constructed protein structure accurately using these small libraries of protein fragments. 

The method presented by Kolodony and coworkers is based on a k-means simulated annealing 

clustering approach. The different libraries were designed for the best fit and for 

reconstruction of protein structures. A large set of different libraries (from 4 to 300 structural 

prototypes, k) was designed with four different prototype lengths, r (from 4 to 7 residues). It is 

noteworthy that fragments never overlapped but the starting positions were sampled randomly 

from the dataset. The learning method consists in (i) selecting k protein fragments as k initial 

prototypes, (ii) associating each protein fragment with its closest prototype, with the criterion 
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of rmsd, (iii) modifying the k prototypes according to their associated fragments, and (iv) 

repeating the process until convergence in a Monte Carlo fashion. Fragments too distant from 

any prototype were considered outliers and eliminated. This approach gave excellent 

structural approximation with clear improvement over previous experiments [284, 307]. 

Another study pointed out  that a small database-derived library of short fragments can 

adequately represent all protein structures, and uses this library to generate sets of protein 

decoys [309]. They constructed self-avoiding and compact protein decoys by repeatedly 

assembling pieces from their library of local protein structure. The pieces used for the 

assembly of the chains were chosen at random, with a limited bias based on the secondary 

structure content of the protein used. Despite the extreme simplicity of this method, the sets of 

decoys were of excellent quality [309]. The coordinates of different libraries of local protein 

structures are available at http://csb.stanford.edu/rachel/fragments/ .  

It must also be noticed that M. Levitt proposed an index called complexity index useful 

for comparing different libraries [307]. It corresponds to an average number of states per 

residue. 

 

(Short) Small Building Blocks. In 1999, Camproux, Hazout and co-workers used Hidden 

Markov Model (HMM [290]) to identify recurrent short structural 3D building blocks (SSBs) 

[282]. The major interest of HMM is to take into account the local dependencies between the 

different local protein structure, i.e. the transitions between the established states. The final 

model was able to give the most probable path connecting various SSBs and so could be 

introduced in the reconstruction of the protein backbone. Each SSB is four residue long 

defined by a vector of four distances: three distances are between the non-consecutive Cα 

atoms and the fourth distance is the projection of last Cα on the plane formed by first three Cα 

atoms. In the first study, a final number of 12 SBBs was selected. Analysis of patterns of 
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SSBs between regular secondary structures was performed. It was found that series of 

fragments between secondary structures were more dependent on following structure than the 

preceding one. It was also found that the combination of SSBs was specific to the kind of 

regular structures it connects [283]. 

Recently the number of SSBs was re-evaluated with regard to Bayesian Information 

Criterion (BIC [310]). This index estimates if the growth of the number of states for a given 

HMM is informative or not. The analysis was performed with two independent non-redundant 

datasets and increased the number of prototypes to 27 SBBs, which all displayed strong 

connection logic. The quality of the structural approximation was assessed also with respect 

to protein structure reconstruction. An interesting point was the finding of two very close α-

helical cores with slight structural differences (rmsd < 0.15 Å) but with very different 

transitions with other states. The reconstruction process of the protein structure was improved 

using Go-based energy function and greedy algorithm [273, 311]. This approach was 

improved with force field such OPEP [312] or EEF1 [313]. Recently, an analysis of this 

structural alphabet had shown that it is suitable for deciphering some local sequence – 

structure relationship [314]. One application of this structural alphabet has been the web 

server SCit that allows analysing the protein side chain conformation [315]. It is available at 

http://bioserv.rpbs.jussieu.fr/cgi-bin/SCit. Another recent one is SABBAC [316], an on-line 

service devoted to protein backbone reconstruction from Cα trace. It is based on the assembly 

of fragments taken from a library encoded into SBBs. The assembly of the fragments is 

achieved by a greedy algorithm, using an energy-based scoring. It can be accessed at 

http://bioserv.rpbs.jussieu.fr/SABBAC.html.  

 

Prototyping and prediction of local structures. The second approach in fragment analysis 

deals with predicting protein fold from sequence using fragment libraries, giving more insight 
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into sequence to structure relationship. To perform prediction from sequence, the number of 

prototypes, N, must be small enough as correct prediction requires limited number of local 

conformations as shown by Rooman & Wodak 's and Fetrow's works [281, 304]. 

To capture most of the local folds, it is necessary to optimize the number of states. It 

should be sufficiently large to approximate correctly the local folds and limited enough to 

ensure correct prediction levels from sequence alone. An alphabet composed of N = 10 to 20 

states is particularly suited for this goal [267, 285]. Bystroff and Baker’s I-Sites is one of the 

most interesting local protein structure libraries. It has been used with a high efficiency for 

improving de novo methods [317, 318]. 

 

Rooman and Wodak. Following their leading works on the local aspect of secondary 

structure, on the critical size of protein databanks to reach correct secondary structure 

prediction [319] and on the characterization of turn specific amino acid signatureq [320], 

Rooman and Wodak described local protein structures that can be considered as stable 

structural units that fold independently of the rest of the structure [280, 321]. The training 

method is based on a hierarchical classification, which uses as criterion the rmsd between 

protein fragments. First, the fragments are compared two by two by calculating rmsd on Cα of 

the protein backbone. Then, a hierarchical clustering is carried out. Lengths going from 4 to 7 

Cα were tested and, for each length, 4 distinct groups were selected. As expected, a template 

corresponding to the α-helix and another to the β-strand was identified for each length. Since 

these structures have high correlations between sequence and structure, they proposed a 

prediction from sequence alone [304]. The prediction approach is related to the classical 

statistical prediction of secondary structures [320]. However, they also proceeded to a 

filtering of the data to ensure a stronger[322] relationship between the local protein structures 

and their associated sequences. With this approach, the authors found, starting from the 
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sequence, a prediction rate ranging between 41% and 47%. This rate must be compared with 

the rates for secondary structures prediction that was prevailing at that time and which was 

about 60% per 3 states [323, 324]. This prediction approach has been used to predict local 

backbone conformation based on zones of Ramachandran map [325, 326]. 

 

I-sites. Bystroff and Baker developed an innovative method for local protein structure 

prediction based on library of short sequence patterns having strong correlation with 3D 

structure. Their method is based on previous observations done by Han and Baker who 

identified recurring local sequence motifs using automatic clustering [327] and extended their 

results to the characterization of corresponding local protein structures [328-330]. Following 

these results, Bystroff and Baker developed an iterative method that would optimize the 

correspondence between protein sequence content and local protein structures, leading to a 

high correlation of the sequence – structure relationship [267]. Based on HSSP families [331], 

sequence based clusters were created and the most frequently occurring structure in each 

cluster was chosen as the structural “paradigm”. Then through an iterative process, related to 

a k-means approach, a dynamic modification of the clusters was performed as (i) local 

structure protein with structure different from the paradigm were removed, (ii) sequence 

patterns were recalculated from the remaining members, (iii) new members were identified 

and (iv) the paradigm was assessed again. Different criteria were also used to ensure a high 

correlation between sequence content and 3D local approximation for each cluster [267]. 

At the end, a library comprising 82 sequence patterns (corresponding to HSSP profiles) 

of 3 to 19 residues long was obtained. These 82 profiles were structurally aligned and grouped 

into 13 different sequence-structure motifs. The generic term for these clusters is “I-sites”. 

The library not only contained previously defined sequence-structure correlation but 

presented few new relationships like diverging type-II β-turn, a frayed helix, a proline-
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terminated helix, and serine-containing β-hairpin. It must be noted this approach does not use 

all the protein fragments of the databank, i.e. not all the protein fragments are encoded. 

Following this characterization, a prediction method was elaborated. This prediction 

combined a secondary structure prediction done by PHD [332, 333] and an adequacy score of 

the 82 clusters. It must be noticed that I-sites length in the prediction step ranges not from 3 to 

19 residues length but are only of 3 and 9 residues length. The secondary structure prediction 

has a very limited weight. The prediction accuracy was based on the use of (φ,ψ) dihedral 

angles of the I-site paradigm and compared with the true dihedral angles. A good prediction 

corresponds to a protein local structure with no predicted dihedral angles with more than 60° 

from the reality. Bystroff and Baker have proposed protein local structures ranging from 3 to 

17 residue length, but in their prediction protocol, they used fixed length of 8 residues. The 

results of their approach lead to excellent results in regards to the number of their I-sites 

[267]. 

This process was tested with correct results during the second Critical Assessment of 

Structure Prediction experiment [334] and a very good correlation with NMR characterization 

of α-spectrin SH3 [335]. 

The same group also built a hidden Markov model called HMMSTR for protein 

sequences based on I-sites library [336]. This HMM was built using overlapping I-sites with 

an updated databank and 3 new I-sites were identified. Using the previous prediction method, 

the prediction rates surprisingly increased, probably due to the computation of accuracy rates 

[337]. 

In HMMSTR extended I-sites library, (i) new sequence-structure correlations such as α-

α corner, Type-I' β-hairpin and Glycine-rich α-helix N-cap were identified, (ii) adjacencies of 

different sequence-structure motifs i.e. non-random transitions between various sequence 

motifs were described and (iii) overlapping motifs are presented in more condensed form, 
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resulting in better description with fewer parameters. HMM model is useful for ab initio 

structure prediction and homology modelling specially loop building problem.  

 

Rosetta algorithm, de novo protein structure prediction method [14, 338] from Baker's 

lab has been one of the most successful prediction methods in the CASP experiments [318, 

339]. It had predicted accurate models that have correct global topology, correct architecture 

of secondary structure elements and functional residues often clustered in active site region 

[14, 340]. Rosetta method has been extended to other protein modelling problems like de 

novo protein design [341, 342], protein-protein docking [343], protein modelling based on 

limited experimental data [344, 345] and loop modelling or modelling structurally variable 

regions in homologous proteins [346]. It must be noticed that I-SITES, HMMSTR and 

ROSETTA have combined in a fully automated ab-initio protein structure prediction that 

gives excellent results for instance for secondary structure prediction [347]. HMMSTR / 

Rosetta server is available at: http://www.bioinfo.rpi.edu/~bystrc/hmmstr/server.php. 

 

Protein Blocks. Another set of structural alphabet was identified by de Brevern, 

Etchebest and Hazout [285]. The main purpose of this work was to construct a structural 

alphabet composed of local protein structures both able to approximate and to predict the 

local structure from the sequence. It differs from the previous studies as it has been 

constructed in two steps: (i) approximation and (ii) prediction. Different sets of local protein 

structures have been defined and the choice of the selected set has been directed both by a 

correct structural approximation and by an acceptable prediction rate. It diverges from I-sites 

approach as (i) all the local protein fragments are used and (ii) no profiles were used. 

This structural alphabet is composed of 16 local structure prototypes of five consecutive 

Cα, called Protein Blocks (PBs), representing local structural features of proteins (see Figure 

(10)). Protein blocks were identified using unsupervised cluster analyzer, taking into account 
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the sequential dependence of the blocks, i.e. related to Kohonen maps [287, 288] and hidden 

Markov models [290]. They are overlapping fragments, 5 residues in length, encoded as 

sequence windows of 8 consecutive dihedral angles (ψ, φ). The distance used in the training 

approach was the root mean square deviation on angular values namely rmsda, i.e. a simple 

Euclidean distance on angular values [279]. Each of the PBs is denoted by letters a to p. The 

relationship of PBs with secondary structure was also studied and can be characterized by 

their secondary structure composition. For example, PB m forms the central part of helix and 

PB d is ideal for β-strand. Each represented respectively 30.0 and 18.9% of the protein 

fragments, the others ranged between 8.7 and 1.0%. PBs from a to c and d to f are mainly 

concerned with N and C caps of β-strand respectively. Similarly PBs k, l and n, o, p form N 

and C caps of helix respectively. The remaining PBs labelled from g to j are mainly concerned 

with coils. PBs are not only capable of representing regular secondary structures but also the 

subtle variations present in the beginning and end of regular structures along with local 

features of coil regions. This set was selected because it ensured a good structural 

approximation and a correct prediction rate. 
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Figure 10. From left to right and top to bottom the 16 Protein Blocks (labelled from a to p) 
are shown. For each PB, the N-cap is on the left and the C-cap is on the right. 

 

Analysis of PBs showed also that transition from one PB to another one is highly 

constrained due to protein topology. The three main observed transitions amounts to a mean 

value of 76%. 

The critical assessment of Protein Blocks in terms of the stability of their distribution 

frequencies, in terms of their main transitions and in terms of their geometrical features has 

been extensively reported [348]. It was hence verified that PB definitions remained valid after 
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the size of the databank was more than tripled (from 86,628 [285] to 293,507 residues). It was 

also highlighted that the distribution of PB frequencies remained equivalent in all the non-

redundant databank. The transitions between all the PBs remained also highly constant.  

Besides, it was shown that the use of rmsda distance allows a good discrimination. The 

comparisons of the rmsd and rmsda values for PBs show that rmsda is more sensitive to small 

structural variations than rmsd. The rmsda is more discriminative to split up the N- or C-caps 

of repetitive structures from the core of the repetitive structures. For instance, PBs m and n 

have discriminative rmsda values for a low non-discriminative rmsd values.  

PBs have also been compared with the classical secondary structures. As shown above 

(see comparison of secondary structure assignment section), the comparison with classical 

secondary structure assignments is not trivial as the assignment methods differ and the 

correspondence with PBs is not direct. For instance, the PB d has the geometrical feature of a 

β-strand, but is assigned by PSEA [241] and by STRIDE [233] to coil state with a rate equal 

to 19.6% and to 29.0% respectively [348]. Specific correspondences have also been 

highlighted like the one between some PBs and Polyproline II core and C-cap [256]. 

 

The extension of Protein Blocks concept to overlapping sequences of five PBs 

corresponding to 9 Cα long has lead to characterization of Structural Words (SWs) [349]. 

Combination of most of the SWs in a protein network encompasses more than 90% of protein 

residues of a non-redundant protein structural database. Interestingly, more than 80% of the 

coils are included in the network. This SWs concept provides a good structural approximation 

for fragments of nine Cα long. Regular structures are represented by most frequently 

occurring SWs e.g. mmmmm or ddddd related to α-helix and β-sheet respectively. SWs also 

represent variation of these regular structures at N and C caps e.g. lmmmm, klmmm, cdddd, 

ddddf etc. Most of the SWs are overlapping either on one or both ends, last four PBs of a 
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given SW may be identical to the first four PBs of another and vice versa. For example, 

mnopa overlap with nopac, nopab and nopaf. Other examples of overlapping SWs involving 

PB d related to β strands are ccddd with bccdd, cdddd, cdddf, and cddde indicating the 

flexibility of these local structures. SWs containing repetitive PB m like mmmpm, mlmmm, 

and mklmm with one or two PB change correspond to irregular, curved or kinked α-helices.  

The prediction performed with the PBs from the sequence information alone is based on 

Bayes’ rule. Figure (11) presents the principle. (a) All the protein fragments associated to a 

given PB are used to compute (b) an occurrence matrix that represents the frequencies of the 

amino acids. These frequencies are normalized in accordance to the frequencies of the amino 

acids in the databank. (c) Then, to predict the PBs for a new sequence of unknown structure, 

the probability of the corresponding amino acid is evaluated (d) using the Bayes’ theorem. (e) 

The predicted PB is associated with the best prediction score. The prediction rate Q16 so 

reached 34.4% [285]. 

A Bayesian probabilistic approach has also been performed with the SWs and had lead 

to an improvement of 4% of the prediction rate but with no optimization of the sequence-

structure relationship [349]. A new approach called pinning strategy has recently increased 

this prediction rate [350]. 
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Figure 11. Prediction principle. (a) All the protein fragments associated to a given PB are 
selected. (b) From this information, an amino acid occurrence matrix is computed. (c) A new 
sequence is presented and (d) the occurrence matrix associated to the PB is used to compute a 
prediction score based on Bayes’ rule. (e) The best score is conserved as the predicted PB. 

 

Different sequence clusters may be associated with the same fold. In a previous study, 

we developed the concept of “n sequences for one fold”, with n the number of sequence 

clusters associated with a given PB. For each protein block or PB, the corresponding set of 

sequences is divided into n groups. Each is represented by one amino acid occurrence matrix 

(as seen in Figure (11)b). This approach is based on an unsupervised clustering close to SOM 

[287, 288] and is called Sequence Families. With this approach, the Q16 rate improved to 

40.7% [285]. 

This approach has further been improved recently using an approach related to simulated 

annealing; it had lead to a Q16 rate equaled to 48.7% [351]. Moreover, this improvement was 

distributed to all the PBs without decreasing the less frequent PBs. A study about the 

combination of secondary structure prediction with simple Bayesian prediction or Sequence 
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Families had shown no particular improvement due to the limited correspondence between the 

three states of secondary structures and the 16 PBs [351]. 

 

 

Figure 12. A screenshot montage of LocPred [352] output. (a) Simple text presentation of the 
results with corresponding probabilities. (b) Graphical representation of the prediction results. 
(c) Confidence index at each residue. (d) Confidence index for the whole protein. 

 

These different predictions are available to the scientific community through a Java 

applet, LocPred [352]. From the sole information of the sequence (see Figure (12)a), simple 

prediction or prediction with Sequence Families can be performed. The results are given with 

corresponding probabilities both in text and graphically (see Figure (12)b). Moreover, the use 

of Bayes’ rule allows computing a confidence index of the prediction. This confidence index 

can be local, i.e. for each residue position (see Figure (12)c), or represented for the whole 

protein (see Figure (12)d). LocPred is available at 

http://www.ebgm.jussieu.fr/~debrevern/LOCPRED/index.html and through the RPBS web 

server [217] http://bioserv.rpbs.jussieu.fr/LocPred/index.html.  

Another approach for predicting local structure in terms of PBs was recently developed 
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by our team (Offmann et al, in preparation). Extraction of large number of pentapeptides from 

protein structure space has been used to build a database of PB annotated pentapeptides. 

Using this pentapeptide database, a novel knowledge-based PB prediction method was 

proposed. The scheme that was used for the prediction is summarized in Figure (13) and was 

assessed on a representative subset of 100 families from SCOP where each homologous 

member was tested using a jack-knife approach. 

 

 

Figure 13. Scheme for predicting local backbone structure in terms of Protein Blocks from 
amino acid sequence by querying a database of pentapeptides that was extracted from known 
structures (Offmann et al, in preparation). Using a sliding window of 5 residues, sequences of 
pentapeptides are extracted and queried against the database. When a pentapeptide is present 
in the database (“hits”), two situations can be distinguished : (i) either it is mapping to a single 
PB (“single hit”) or it is mapping to several PBs (“multiple hits”). The occurrence of the true 
PB in the list of hits is counted. When a pentapeptide is absent in the database (“no hits”) the 
corresponding tetrapeptide (by considering residues 1, 2, 4 and 5) is searched. Three 
situations can arise; two corresponding to the “hits” and “multiple hits” situations described 
above and the third to the absence of both the pentapeptide and tetrapeptide in the database 
(“no hits”). The occurrence of the true PB in the first two situations is counted. 
 

Preliminary prediction results have shown the viability of this approach. First, 67% of 

the query peptides matched (hit) to an entry in the database and in more than 60% of such 

cases, the true PB was indeed present. Second, by relaxing the identity of the residue in the 

middle position and by checking the availability of the corresponding tetrapeptide in the 

database helped considerably to increase the overall success rates. On average, a global 62% 

success rate was achieved. This knowledge-based prediction scheme is available at 
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http://bioinformatics.univ-reunion.fr/PBE/pb_prediction/. 

 

Hunter and Subramaniam. The approach developed by Hunter and Subramaniam is 

more classical and encompass long fragments of 7 residue long [353]. The local protein 

structures were compared using a hypercosine clustering method, i.e. a faster method than 

rmsd superimposition. Then, the authors chose a threshold to select the final number of 

clusters called centroids. They performed an in-depth analysis of the parameters used to select 

the centroids, but the analysis of the obtained local protein structures is weaker. Indeed, the 

clustering approach seems to create big unbalanced clusters. For instance, with a threshold 

that leads to find 28 centroids, 13 centroids represent 99.9% of the protein fragments and 4 

more than 75%.  

In a second step, they performed a prediction method highly similar to de Brevern et al. 

using Bayes’ rule with a slight modification to take into account of the repetitive structures 

[354]. The Bayesian prediction rate reaches 40%. However, this value is strongly biased 

towards the most frequent centroids at the expense of the others. Eight of the 28 local protein 

structures are predicted at a rate above 20% but only four above 50%. In addition, eleven 

centroids are not predicted at all. The approach developed by Hunter and Subramaniam hence 

can be improved to find an equilibrium between a better description of the protein structures 

and a prediction better distributed. Moreover, a surprising change in the approximation done 

by the 28 centroids appeared without any explanation between the initial report on the 

structural approximation (1.71 Å) [353] and the one on the prediction (1.23 Å) [354]. 

 

Local structure clustering. Sander and co-workers have recently described a novel 

approach to create local structure prototypes [355]. They defined 27 prototypes of 8 residues 

long comparable to Hunter and Subramaniam [353]. The clustering was based on Cα distance 
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matrix comparison. They also introduced a new approach to local protein structure prediction. 

In contrast to Baker’s approach [267], they took into account structural information while 

partitioning sequence space. As sequence diversity is much higher than structural variation, it 

was expected that unsupervised learning in sequence space would be harder than 

unsupervised learning in structure space. In contrast to Hunter and Subramaniam’s approach 

[353], they also incorporated protein family information by using profiles instead of 

sequences. They have tested numerous prediction approach using C.5 classifier [356], Support 

Vector Machines [357] and random forest [358]. All these approaches have led to a prediction 

not biased as it was the case for Hunter and Subramaniam. 

 

Multiple alphabets. Karchin and co-workers have done an important work by defining 

numerous potential structural alphabets based on geometrical properties such as the α angle 

[275, 359]. They have also adapted other approaches such as a subdivision of STRIDE or 

DSSP secondary structure assignment methods. They have so compared the features of 9 

structural alphabets using information content. Their results show clearly that some 

descriptions have a very limited interest and other seems highly informative. Their results 

clearly showed that PB alphabet was highly informative with the best predictive ability [359]. 

Recently, they also highlighted that the best predictive ability was not always associated to the 

best final prediction depending on the prediction method, i.e. some prediction methods are not 

well suited for some specific alphabets [360]. For instance, PBs used as a secondary hidden 

Markov model track reverse-sequence null model gives scoring results in significantly more 

false positives than geometric null scoring [360]. 

 

Other developments. Structural alphabets have been used for various purposes. For 

instance, structural alphabets defined by Camproux et al. [282, 361] and by de Brevern et al. 
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[285, 352] have proved their efficiency both in the description and the prediction of small 

loops [99, 283, 362, 363] or long fragments [349, 364-368]. In the following, we will detail 

some interesting developments based on the application of these local protein structures. 

 

SA-Search. SA-Search is a web tool developed by Guyon and co-workers (see Figure 

(14)) that can be used to mine for proteins with similar fold and extract structural similarities 

[369]. It is based on the structural alphabet developed by Camproux (see Short Structural 

Building Blocks section) [361]. Using such a representation, classical methods developed for 

amino acid sequences can be employed. In SA-Search fast 3D similarity searches such as the 

extraction of exact words using a suffix tree approach can be achieved and the search for 

fuzzy words can be viewed as a simple 1D sequence alignment problem. At this time, SA-

Search gives results often with shorter alignment length than DALI [370], but one strong 

point of SA-Search is that it allows the fast mining of protein structures, a typical run being 

on the order of a few seconds. SA-Search is available at the following url at the RPBS web 

server [217]: http://bioserv.rpbs.jussieu.fr/cgi-bin/SA-Search. A more sophisticated approach, 

based also on the structural alphabet developed by Camproux, was used recently to mine 

SCOP, namely MinSet: http://mathbio.nimr.mrc.ac.uk/~jkleinj/MinSet  [371]. 
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Figure 14. SA-Search. (a) Query page. (b) Results of the extraction of structural similarities 
and (c) rasmol representation of superimposed structures. 

 

PBE server. Very recently, a substitution matrix in terms of Protein Blocks was 

developed based on the analysis of local structure variations in the alignments of homologous 

proteins from the large PALI database [372]. The number of substitutions between any two 

PBs was counted based on the alignment corresponding only to structurally conserved regions 

identified in PALI [373-377]. This caution was exercised, as the alignment of residues in the 

structurally variable regions is meaningless in the rigid body alignments. The raw frequencies 

were normalized and were then expressed as log-odds scores (see Table 5). It was shown that 

most of the off-diagonal elements are negative suggesting that most of the local 

conformations in the homologous protein structures are conserved while only few off-

diagonal elements were with positive substitution scores i.e. with favourable substitutions. 

This example nicely illustrates how a structural alphabet was used to derive local structure 

H
A

L author m
anuscript    inserm

-00175058, version 1



Local Protein Structures (Offmann, Tyagi & de Brevern) 

 62

variations that are more or less frequently observed in aligned structures.  

 

Protein 
Blocks a b c d e f g h i j k l m n o p 

a 2.73                

b -0.37 2.92               

c 0.27 -0.49 2.09              

d -0.70 -0.86 -0.26 1.48             

e -1.86 -0.76 -1.39 -0.78 3.46            

f -0.83 -1.81 -0.71 -0.96 0.42 2.54           

g 0.15 -0.88 0.01 -1.60 1.19 -0.54 3.89          

h -1.42 -0.10 -1.95 -1.65 0.35 -0.68 -0.83 3.43         

i 0.16 -0.02 -1.37 -1.52 -1.42 -1.38 -0.35 -1.13 3.81        

j -1.32 0.13 -1.25 -1.28 -0.96 -0.59 -0.59 0.96 1.35 4.31       

k -2.07 -0.36 -2.78 -3.12 -0.73 -0.40 -1.62 0.15 -0.47 -0.18 2.81      

l -0.90 -0.26 -2.53 -2.02 -2.08 -0.69 -0.93 -0.70 -0.51 -0.33 -0.16 2.60     

m -2.92 -3.51 -3.24 -5.88 -5.29 -2.72 -1.51 -3.48 -3.67 -2.46 -1.62 -1.23 0.97    

n -1.73 -1.17 -2.03 -3.56 -0.93 -2.37 0.84 -1.43 -1.30 -0.71 -0.96 -0.64 -1.36 3.95   

o -0.85 -0.88 -0.99 -3.14 -2.80 -1.78 -0.22 0.61 -1.20 -0.70 -2.08 -0.29 -1.85 -0.07 3.67  

p -0.60 0.04 -0.30 -2.53 -2.52 -2.24 0.33 -2.10 1.05 0.40 -1.69 -1.54 -1.64 0.01 -0.07 3.23 

 

Table 5. Normalized substitution frequencies [372] expressed as log-odds scores 
between any two protein blocks as determined by structure-based pairwise alignments of 
homologous proteins of known three-dimensional structure from PALI database [375]. 
 

The generated PB substitution matrix was validated by benchmarking how well it can be 

used to identify structurally equivalent regions in closely or distantly related proteins using a 

dynamic programming approach. The alignment results obtained are very comparable to well 

established structure comparison methods like DALI and STAMP [372]. 

An extension of the application of this PB substitution matrix in the direction of protein 

structure comparison and mining protein structure databanks for similar folds has been 

attempted [378]. Here, simplified 1D representation of protein structure in terms of PBs was 

analyzed just like amino acid sequence analysis to find structural local similarity, dissimilarity 

and relationship among protein structures. This has been implemented in the SCOP based 

Protein Block Expert (PBE) Server (see Figure (15)). Two protein structures can be compared 
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using simple dynamic programming algorithm by aligning their PB sequences using the PB 

substitution matrix (PB-Align). Similarly, PBE server uses the same PB alignment method to 

extract similar fold or related protein structures from a given databank with an average of 

81.3% of first ranked hits belonging to the same SCOP FOLD as the benchmarked query. 

This server is available at (http://bioinformatics.univ-reunion.fr/PBE/).  

 

 

Figure 15. Architecture of PBE server. The main facilities available in PBE are (i) the 
encoding of protein structures into 1D sequences of PBs (PBE-T), (ii) the comparison 
between two structures by aligning their PB sequences (PBE-ALIGNc), the mining of 
structural databases for similar folds (PBE-ALIGNm) and a database of PB sequences and 
aligned PB sequences from homologous families (PBE-SAdb). 
 

It is further demonstrated by a rigorous comparative analysis (Table 6) that performance 

of PB-Align for comparing structures [379] and for mining similar folds was at least 
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equivalent if not better to well-established structure comparison methods including CE, 

DALI, DEJAVU, FATCAT, VAST and YAKUSA (Tyagi et al., submitted). 

 

Program Mainly α (19) Mainly β (19) Mixed αβ (15) Few SSEs (8) Total (%) 

PB-ALIGN 18+ 17* 14 8 96.6 

YAKUSA 17 19 14 8 95 

CE 17 19 13 8 93 

DALI 14 19 14 8 90 

MATRAS 
 

11 
 

19 
 

14 
 

8 
 

85 
 

VAST 
 

12 
 

17 
 

15 
 

7 
 

84 
 

TOP 
 

14 
 

18 
 

12 
 

7 
 

84 
 

DEJAVU 
 

14 
 

19 
 

9 
 

4 
 

75 
 

TOPSCAN 
 

15 
 

12 
 

9 
 

7 
 

70 
 

TOPS 
 

2 
 

15 
 

14 
 

7 
 

62 
 

PRIDE 
 

14 
 

14 
 

7 
 

3 
 

62 
 

LOCK 
 

0 
 

14 
 

11 
 

8 
 

54 
 

SSM 
 

5 
 

13 
 

10 
 

5 
 

54 
 

 
 

 
Table 6. Comparison of PB-ALIGN with existing structure comparison methods. 

Comparison of PB-ALIGN with 12 structure comparison methods was based on results from 
Carpentier et al. [379]. Are indicated the total number of successful queries for each method 
in each main SCOP class. The numbers along with the header gives total number of queries 
belonging to each class. All the hits are counted based on first 10 ranking alignments 
compared to 100 hits taken by Carpentier et al. [379]. 

+ One query has no target in our database. * For mainly b class, query protein 1vmo has 
no target in our database and query 1ciy misses target in top ten ranks. 

 

3D-BLAST. A similar approach to the one developed in SA-Search and PB-Align and 

which uses a 23 states structural alphabet to describe the backbone has been developed very 
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recently [380]. This method named 3D-Blast, uses BLAST as a search method using a 

structural alphabet substitution matrix to find the longest common substructures with high-

scoring segment pairs. Interestingly, this method uses an E-value as measure of statistical 

significance of an alignment and generates results with performance comparable to known 

methods.  

Its general principle has recently been detailed [381]. The proteins were cut into 

structural fragments of 5 residues length encoded as κ and α angles. The authors discretized 

the (κ, α) plot into 648 representative segments and clustered them into 23 clusters grouping 

similar fragments. One the cluster was dedicated to the fragments not associated to a given 

cluster. The obtained clusters were consistent with secondary structure content defined by 

DSSP program [231]. The dedicated substitution matrix was obtained using 674 

superimposed pairs of proteins taken from SCOP. Classical BLAST approach [382, 383] was 

used to perform the mining of structural database. Using a greedy algorithm [308], the authors 

proved the validity of their structural alphabet by reconstructing 39 protein structures with 

efficiency. 

 

Short loops. The concept of local protein structures has been applied to predict short 

loop conformations. A first attempt has used the structural alphabet composed of 12 local 

protein structures defined by Camproux and co-workers [282]. It followed an analysis of the 

dependence between the SBBs [283] and focussed on the prediction of “exact” succession of 

local protein structures, i.e. exact words [362]. The quality of the results was highly 

dependant of the number of occurrence of these words. 

Recently, local protein structures in terms of Protein Blocks has been predicted from 

amino acid sequence [285, 351, 352]. Similarly the backbone of short loops was predicted in 

terms of PBs [99]. The prediction was performed using a classical Bayesian approach, but 
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contrarily to the previously reported studies, the prediction was performed specifically for 

these loop regions. As expected, the knowledge of the protein zones induced a significant 

improvement of the prediction rate of the PBs from amino acid sequence. New sequence – 

structure relationships were highlighted. Nonetheless, the size of the databank (a non – 

redundant databank with a too low identity sequence rate) remained an important limitation. 

 

HMMSTR developments. HMMSTR has also proven to be useful in many other 

instances. It has successfully been used to predict protein three-dimensional local structures, 

secondary structures, to identify protein-coding ORFs, or to design a sequence to fit a 

structure. Recently, a two-dimensional approach has been developed with HMMSTR-CM 

[384]. The latter predicts the likelihood of pairwise inter-residue contacts. The resulting 

contact maps can be projected into three-dimension using methods based on distance 

geometry such as those used to solve NMR structures. Interestingly HMMSTR-CM contains a 

set of rules that describe how secondary structure elements can arrange themselves in 3D.  

Similarly, the remote homologue detection method called SVM-HMMSTR has been 

developed that overcomes the reliance on detectable sequence similarity by transforming the 

sequences into strings of hidden Markov states that represent local folding patterns. It uses a 

Support Vector Machine (SVM) that combines an order-independent feature which captures 

the amino acid and local structure composition and an order-dependent feature which captures 

the sequential ordering of the local structures, and its performance overcomes numerous 

equivalent approaches [385]. 

Another program, SCALI, which is based on HMMSTR, has recently been developed to 

find all possible ways for arranging secondary structure units in space, and to model them as 

HMMs. To do this task, a computationally feasible method was developed to perform 

alignments of protein structures to find conserved packing arrangements, even if they are non-
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sequentially ordered in space. The results of SCALI are better than current methods that 

cannot find non-sequential similarities in proteins [386]. 

Very recently, Huang and Bystroff extended local structure predictions from HMMSTR 

to improve the quality of the most difficult pairwise alignments, those with less than 25% 

sequence identity using a profile-profile alignment method [387]. A new model, called 

HMMSUM (HHMSTR-based Substitution Matrices) was developed where a set of matrices, 

one for each 281 local structure contexts defined by HMMSTR, were summed from a training 

set of multiple sequence alignments in the same way PAM and BLOSUM matrices were 

summed. When HMMSUM model is used in an alignment, target and template HMMSTR 

descriptors are predicted before an alignment matrix is calculated using the model. It is argued 

that the improved accuracy of HMMSUM matrices over other equivalent single matrices 

methods like SDM is due to the fact that, since different local structures may have significant 

different amino acid preferences, these can only be captured using multiple substitution 

matrices like in HMMSUM. 

 

Building blocks folding model. Somewhat different but also interesting is the “building 

blocks folding model” proposed by Nussinov’s group. Unlike alphabet approaches based 

mainly on 3D similarities between fragments, Nussinov and her collaborators focused on the 

elementary folding units that lead through a hierarchical process to the folded state [388, 389]. 

These folding units are obtained from a progressive and hierarchical dissection based mainly 

on native 3D interactions in the folded state. The process concludes with fragments of 

variable length (at least 13 residues) and may be used to engineer new naturally occurring 

folds with low homology to existing proteins [390]. Such elementary folding units have been 

used in a homology prediction strategy. A target sequence is compared with and aligned to the 

building block sequences in the database. A graph approach then assigns the building block 
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automatically to the query sequence. Before this method can be used for ab initio structure 

prediction purposes, further exploration needs to establish position-specific sequence-

structure relations from these elementary folding units. This methodology, while it may 

constitute an alternative to structural alphabets, is clearly based on a distinct approach. Any 

direct comparison between these folding units and the fragments defined by a structural 

alphabet is less than straightforward.  

 

Other related works. In the same way, Lee and co-workers have presented preliminary 

results highly related to the work of Camproux [283, 361] using a two-stage strategy to cluster 

local protein structures using BIC criteria and Expected Maximization [391]. Their results 

seemed promising but lacked biological analyses [392]. It has been used to classify protein 3D 

folds in regards to a simple categorization within SCOP superfamily [393]. Yi and co-workers 

also tried to create a library of local protein structures with a methodology highly similar to 

Schuchhardt et al. and de Brevern et al. [279, 285] using dihedral angles (φ, ψ) [394]. 

Nonetheless, these approaches had led to the proposition to a too high number of clusters 

(1858 for only 3636 fragments), showing that some parameters in the learning approach 

needed to be improved. Zheng and Liu have proposed a set of local protein structures and an 

associated substitution matrix [395, 396]. To compute this matrix, they have used protein 

families from FSSP database and derived a substitution matrix in the same way as BLOSUM 

[397]. It is noteworthy that their set of protein local structures have been built in the absence 

of any comprehensive analysis on the structural alphabet and their learning method is 

questionable, i.e. a mixture model of pseudo-bond angles. Same remarks can be made about a 

recent prediction method based on Artificial Neural Net works – derived from HYPLOSP 

approaches [398, 399] and dedicated to the prediction of PBs [400]. The results are higher 

than the pervious ones based only on one sequence, but no analysis are done to assess the 
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absence of bias in favor to the most frequent PBs. 

On the other hand, we must note the excellent PhD thesis of Tang who proposes novel 

approaches to obtain local protein structure useful in prediction process [401, 402]. Hence, he 

proposes a method to obtain structural alphabets based on a variation of k-means algorithm. In 

the same way, Wang and co-workers have developed local structure-based sequence profile 

database called LPBSP1 and LPBSP2 [403-405]. Local structure-based sequence profiles are 

equivalent to sequence-structure motifs as they both represent the consensus of a group of 

segments sharing similar compositions and structures. 

 

Other applications 

Assessment of structural diversity of pentapeptides. Taking advantage of protein blocks 

which offer a standardized and refined description of protein local conformations, the 

question of the structural diversity of pentapeptides, namely of identical pentapeptides, was 

asked to provide new insights into local sequence-structure relationship (Offmann et al., in 

preparation). Results obtained generally confirmed the known paradigm that identical 

stretches of amino acids can adopt different conformations as it was established previously 

[406-408]. More than 73% of identical pentapeptides are surveyed to adopt different local 

conformations. Amino acid content seems to critically define the inherent capability of 

identical pentapeptides to adopt different local conformations. For example, higher 

propensities in glycine content in these pentapeptides confirmed its well ubiquitous 

distribution in the phi-psi Ramachandran’s map. It is suggested that this largely distributed 

property of identical pentapeptides to adopt different local structures can be viewed as to be 

evolutionarily advantageous. Points of structural flexibility of constituent pentapeptides inside 

a polypeptide chain may be viewed as naturally necessary during its lifetime with regard to its 

folding and function. 
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Evidence for strong local sequence to structure relationship at the level of pentapeptides 

in protein structures has nevertheless been brought in this work (Offmann et al., in 

preparation). Examples of identical pentapeptides that have conserved local structures in 

otherwise different environments have been identified. It is shown that they are not widely 

distributed; only about 25% of multicopy pentapeptides indeed map to a single PB. Most of 

them, surprisingly are found in helical-like structures (map to PB m) and to some extent to 

strand-like conformations. Reasons for recruitment of structurally “stable” pentapeptides has 

yet to be established, but their presence is suggested to be a landmark in protein structures and 

may represent structural “hotspots” in proteins. 

 

Hybrid Protein Model. The reliability of the Protein Blocks for characterizing long 

fragments enabled the development a novel unsupervised clustering method called Hybrid 

Protein Model (HPM). This method, which can capture long-range features of a succession of 

PBs, compresses a structural protein databank into a limited set of clusters. The HPM training 

principle is similar to that of Kohonen’s SOM [287, 288]. Its originality is that it can learn 

long protein fragments previously encoded into series of PBs. HPM compacts a databank of 

such fragments into one “Hybrid Protein” (HP), by stacking them on the basis of the 

similarity of their PB series. Through this process, it builds a library of clusters that group 

structurally similar fragments; each cluster is represented by a mean local structure prototype. 

Unlike standard clustering methods, HPM generates a library of overlapping prototypes. Its 

principal advantage is that it takes into account the dependence between successive local 

structures along the proteins by maintaining their continuity. 

Two main characteristics affect the features of the final library built by HPM: the length of 

the protein fragments and the number of clusters in the library. A first HPM of 100 clusters, 

grouping a series of 10-PB fragments, was used for fine description of protein 3D structures 
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and efficiently identified local structure similarities between two cytochromes P450 [364]. 

Subsequent examination of a new learning approach led to an HPM of 233 clusters that 

grouped a series of 13-PB fragments [368]. Recent work has focused on improving detection 

of similarities between long fragments [366, 367]. 

Recently, the library of local structure prototypes constructed by the HPM has been used to 

develop a prediction strategy, aiming at optimizing exploitation of the sequence-structure 

relations in this library. This was achieved by setting up a system of experts, each defined by 

logistic regression and best able to discriminate from sequence a given local structure 

prototype relative to the others. The experts then computed probabilities for each prototype 

for a target sequence window, and the top scorers become structural candidates [409]. Recent 

use of Support Vector Machines coupled with evolutionary data has greatly improved the 

prediction rates (Bornot et al., in preparation). 

HPM was also used to analyze the sequence – structure relationship of globular proteins 

[410] and an adaptation of the algorithm was done for genomic data [411, 412]. 

 

Spectacular example of application of local structures for modelling DARC. The Duffy 

Antigen/Receptor for Chemokine (DARC) is an erythrocyte receptor for malaria parasites 

(Plasmodium vivax and Plasmodium knowlesi) and for chemokines. In contrast to other 

chemokine receptors, DARC is a promiscuous receptor that binds chemokines of both CC and 

CXC classes. The extracellular domains of DARC are characterized by a long N-terminal 

chain essential for the interaction both with the malaria erythrocyte-binding proteins and the 

chemokines. Structural models of the DARC have been elaborated and analyzed [413]. The 

building of the 3D models was based on a comparative modelling process. Protein Blocks 

were used in complement of classical transmembrane prediction, threading, ab initio and 

secondary structure approaches. The chosen structural models correlated at best available 
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experimental data (see Figure (16)).  

 

 

Figure 16. Visualisation of DARC protein using VMD software [8]. The N terminus region is 
presented at the top left of the figure. 

 

The analysis of the flexibility of the extracellular domains is performed with simulated 

annealing. The second and fourth extracellular loops are strongly constrained. Protein Blocks 

were used (i) for the analysis of the sequence – structure relationship using LocPred software 

[352] and (ii) also to analyze the simulated annealing results from Gromacs [414, 415]. In 

both case, the number of local protein structures have given a better analysis of the results 

than the classical secondary structures. 

 

H
A

L author m
anuscript    inserm

-00175058, version 1



Local Protein Structures (Offmann, Tyagi & de Brevern) 

 73

Discovering Structural Motifs using a Structural Alphabet. To test a PBs-based strategy 

for discovering metal binding site structural motifs, Dudev and Lim scan a database of zinc 

binding sites [416]. They searched for proteins containing a characteristic sequence motif 

[417]. All of these proteins were found to possess a PB structural motif f(2)o(13-15)f(2)m 

showing that structural-alphabet based approach for discovering new structural motifs seems 

promising. The study was extended to Mg2+-binding sites which are more difficult protein 

families. The resulting structural patterns were more complex and sometimes fuzzier but 

showed the interest of such an approach, e.g. similar Mg2+ binding site structures were found 

in otherwise unrelated protein sequences [418]. 

 

Comparison between approaches towards local structures. One of the major difficulties 

of the local protein structures – and contrarily to secondary structure assignment – is the lack 

of comparisons between different approaches. It is mainly due to three factors: (i) the use of 

very different criteria and / or methodology for each approach, (ii) the absence of software 

able to perform an easy encoding of the protein structures and (iii) the use of local protein 

structures of different length. Most of the time, the analysis focus only on the distribution of 

secondary structures in each local protein structure. We can note an old comparison that was 

done a few years ago between the Protein Blocks and (a) Rooman and Wodak’s local protein 

structure [280], (b) Fetrow’s local protein structure [281] and (c) Camproux’s first structural 

alphabet [337]. The comparison was mainly based on protein encoded by two structural 

libraries. It has highlighted the difficulties of comparison (see Table 7), but also the interest of 

different approaches for the analysis of repetitive and non-repetitive local structures.  

For instance, between PBs and SBBs, PB d that represents the central core of a β-strand 

corresponds to SBBs β2 (55.8%), γ2 (16.4%) and β1 (14.7%), and PB h, a local protein 

structure associated to the coil corresponds to SBBs γβ  (23.3%), γ2 (22.9%) and β2 (17.6%). 
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SBBs β are related to β-strand, while γ are coil states, thus γβ is a N-cap of a β-strand. 

Recently, another comparison has been performed between the Protein Blocks and libraries 

elaborated by Levitt and oligons elaborated by Micheletti [351]. Due to the absence of protein 

structure assignment, the comparison has been directly done between the local protein 

structures; this comparison nevertheless gave some insight towards the understanding of the 

specificity of each approach. 

 

  Protein Blocks 

  a b c d e f g h i j k l m n o p 

η  5.7      11.4 1.6 2.2 11.9 9.2 23.1 15.4 11.7 2.7 

α            10.6 86.1    

τ 7.1 6.4 10.2 16.0  2.2 5.0  12.7   5.2 7.3 1.2 8.2 16.4 

ζ 2.0  1.5 1.3 9.4 34.9 1.9 5.1  2.1 27.2 2.7 9.0   1.1 

ι 7.1 10.6 15.8 40.4 6.5 3.7 2.0 1.9 1.5 1.1 1.0 1.0 1.2   4.9 

S
B
B
s 

β 7.2 7.1 18.3 53.2 2.4 6.1  1.6        1.9 

 

Table 7. Comparison of LSPs assignment with PBs assignment using the protein databank 
used by Fetrow and co-workers [281]. The frequencies fij correspond to the percentage of LSP 

i found associated to PB j. 
 

Conclusion. Local protein structure libraries are an important and relevant area of 

research. Nonetheless, it is often minimized or underestimated for a major reason. It is due to 

the importance of regular secondary structures, i.e. α-helix and β-sheet. They represent half of 

the residues and possess critical physico-chemical properties essential for the protein fold. It 

allows a very interesting simplification of protein structures and so has been widely used. 
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Local protein structure libraries or structural alphabets complexify greatly the information 

from a simple 3-states (two regular and one undefined) to more than a dozen local protein 

structures at least, i.e. more difficult to apprehend. 

This review attempted to show that research area in this field is very active and that, up 

to now, yielded very interesting results. Several points should be stressed on. One of the most 

important one has been highlighted by Karchin and co-workers’ excellent investigations 

[275]: in final, it is difficult to compare between the different local protein structure libraries.  

In the same way, classical predictions were assessed by indexes that may not be suited 

for a structural alphabet such as the Matthews’ correlation coefficient [419], an index 

elaborated for only two states. So, other indexes must be used to ensure a correct and 

unbiased prediction. For instance, the prediction done by Hunter and Subramaniam is highly 

biased as 11 out of 28 local protein structures are not populated nor used. Baldi and co-

workers present a very good review on different indexes that can help towards this aim [420]. 

Serge Hazout has also proposed an index based on Shannon entropy that can help such 

comparison [285]. 

This difficulty is widely observed even with a sophisticated approach such as SSPRO 

[49], a complex HMM that used evolutionary profiles. It is one of the best secondary structure 

prediction method (Q3 ~80%), but its prediction rate drops to 62% when the number of 

predicted state climb to 8, i.e. DSSP assignment. Moreover, two states cannot be predicted. 

For the ASs, few have been used in prediction approaches and they emphasises the same 

problem: “higher the number of states rise, harder the prediction”. For instance, the prediction 

done by Hunter and Subramaniam equals 40% but is highly biased as 11 out of 28 local 

protein structures are not populated nor used [354]. 

We observed a similar evolution to the secondary structure prediction going from simple 

statistical approach based on one sequence to sophisticated methods. Efficient algorithms for 
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predictions using structural libraries have been developed. I-sites library is such an example 

coupling complex prediction method with evolutionary information [267]. Similar approach 

has been developped by Sander and co-workers that used SVMs [355] and the coupling of 

SVMs with evolutionary information has increased the prediction of local structure prototypes 

developed by Benros and co-workers (Bornot et al., submitted).  

As we have seen in this review, the vision of the protein structures is not as basic and 

trivial as often admitted. First, the secondary structures are more complex than “simple” 

hydrogen bonds, they are not rigid bodies and so it is sometimes difficult to precisely delimit 

them. Second, they are not the only possible solution to analyze and predict the protein 

structures and with respect to this, the use of structural alphabets seems a very promising 

research avenue. 
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