Scaling limits of permutation classes with a finite specification: a dichotomy - Département de mathématiques appliquées
Article Dans Une Revue Advances in Mathematics Année : 2022

Scaling limits of permutation classes with a finite specification: a dichotomy

Résumé

We consider uniform random permutations in classes having a finite combinatorial specification for the substitution decomposition. These classes include (but are not limited to) all permutation classes with a finite number of simple permutations. Our goal is to study their limiting behavior in the sense of permutons.The limit depends on the structure of the specification restricted to families with the largest growth rate. When it is strongly connected, two cases occur. If the associated system of equations is linear, the limiting permuton is a deterministic X-shape. Otherwise, the limiting permuton is the Brownian separable permuton, a random object that already appeared as the limit of most substitution-closed permutation classes, among which the separable permutations. Moreover these results can be combined to study some non strongly connected cases. To prove our result, we use a characterization of the convergence of random permutons by the convergence of random subpermutations. Key steps are the combinatorial study, via substitution trees, of families of permutations with marked elements inducing a given pattern, and the singularity analysis of the corresponding generating functions.
Fichier principal
Vignette du fichier
S0001870822003309.pdf (1.7 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02412965 , version 1 (22-07-2024)

Licence

Identifiants

Citer

Frédérique Bassino, Mathilde Bouvel, Valentin Féray, Lucas Gerin, Mickaël Maazoun, et al.. Scaling limits of permutation classes with a finite specification: a dichotomy. Advances in Mathematics, 2022, 405, pp.108513. ⟨10.1016/j.aim.2022.108513⟩. ⟨hal-02412965⟩
344 Consultations
28 Téléchargements

Altmetric

Partager

More