Apprentissage et réseaux de neurones en tomographie par diffraction de rayons X. Application à l'identification minéralogique - Thèses de l'Université d'Orléans
Thèse Année : 2024

Neural networks for X-ray diffraction computed tomography. Application to mineralogical identification

Apprentissage et réseaux de neurones en tomographie par diffraction de rayons X. Application à l'identification minéralogique

Résumé

Understanding the chemical and mechanical behavior of compacted materials (e.g. soil, subsoil, engineered materials) requires a quantitative description of the material's structure, and in particular the nature of the various mineralogical phases and their spatial relationships. Natural materials, however, are composed of numerous small-sized minerals, frequently mixed on a small scale. Recent advances in synchrotron-based X-ray diffraction tomography (to be distinguished from phase contrast tomography) now make it possible to obtain tomographic volumes with nanometer-sized voxels, with a XRD pattern for each of these voxels (where phase contrast only gives a gray level). On the other hand, the sheer volume of data (typically on the order of 100~000 XRD patterns per sample slice), combined with the large number of phases present, makes quantitative processing virtually impossible without appropriate numerical codes. This thesis aims to fill this gap, using neural network approaches to identify and quantify minerals in a material. Training such models requires the construction of large-scale learning bases, which cannot be made up of experimental data alone.Algorithms capable of synthesizing XRD patterns to generate these bases have therefore been developed.The originality of this work also concerned the inference of proportions using neural networks. To meet this new and complex task, adapted loss functions were designed.The potential of neural networks was tested on data of increasing complexity: (i) from XRD patterns calculated from crystallographic information, (ii) using experimental powder XRD patterns measured in the laboratory, (iii) on data obtained by X-ray tomography. Different neural network architectures were also tested. While a convolutional neural network seemed to provide interesting results, the particular structure of the diffraction signal (which is not translation invariant) led to the use of models such as Transformers. The approach adopted in this thesis has demonstrated its ability to quantify mineral phases in a solid. For more complex data, such as tomography, improvements have been proposed.
La compréhension du comportement chimique et mécanique des matériaux compactés (par exemple sol, sous-sol, matériaux ouvragés) nécessite de se baser sur une description quantitative de structuration du matériau, et en particulier de la nature des différentes phases minéralogiques et de leur relation spatiale. Or, les matériaux naturels sont composés de nombreux minéraux de petite taille, fréquemment mixés à petite échelle. Les avancées récentes en tomographie de diffraction des rayons X sur source synchrotron (à différencier de la tomographie en contraste de phase) permettent maintenant d'obtenir des volumes tomographiques avec des voxels de taille nanométrique, avec un diffractogramme pour chacun de ces voxels (là où le contraste de phase ne donne qu'un niveau de gris). En contrepartie, le volume de données (typiquement de l'ordre de 100~000 diffractogrammes par tranche d'échantillon), associé au grand nombre de phases présentes, rend le traitement quantitatif virtuellement impossible sans codes numériques appropriés. Cette thèse vise à combler ce manque, en utilisant des approches de type réseaux de neurones pour identifier et quantifier des minéraux dans un matériau. L'entrainement de tels modèles nécessite la construction de bases d'apprentissage de grande taille, qui ne peuvent pas être constituées uniquement de données expérimentales. Des algorithmes capables de synthétiser des diffractogrammes pour générer ces bases ont donc été développés. L'originalité de ce travail a également porté sur l'inférence de proportions avec des réseaux de neurones.Pour répondre à cette tâche, nouvelle et complexe, des fonctions de perte adaptées ont été conçues. Le potentiel des réseaux de neurones a été testé sur des données de complexités croissantes : (i) à partir de diffractogrammes calculés à partir des informations cristallographiques, (ii) en utilisant des diffractogrammes expérimentaux de poudre mesurés au laboratoire, (iii)  sur les données obtenues par tomographie de rayons X. Différentes architectures de réseaux de neurones ont aussi été testées. Si un réseau de neurones convolutifs semble apporter des résultats intéressants, la structure particulière du signal de diffraction (qui n'est pas invariant par translation) a conduit à l'utilisation de modèles comme les Transformers. L'approche adoptée dans cette thèse a démontré sa capacité à quantifier les phases minérales dans un solide. Pour les données les plus complexes, tomographie notamment, des pistes d'amélioration ont été proposées.
Fichier principal
Vignette du fichier
2024ORLE1033_va.pdf (10.86 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-04848275 , version 1 (19-12-2024)

Identifiants

  • HAL Id : tel-04848275 , version 1

Citer

Titouan Simonnet. Apprentissage et réseaux de neurones en tomographie par diffraction de rayons X. Application à l'identification minéralogique. Géochimie. Université d'Orléans, 2024. Français. ⟨NNT : 2024ORLE1033⟩. ⟨tel-04848275⟩
0 Consultations
0 Téléchargements

Partager

More