Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation - SAM
Pré-Publication, Document De Travail Année : 2015

Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation

Résumé

In this work, we propose a smart idea to couple importance sampling and Multilevel Monte Carlo. We advocate a per level approach with as many importance sampling parameters as the number of levels, which enables us to compute the different levels independently. The search for parameters is carried out using sample average approximation, which basically consists in applying deterministic optimisation techniques to Monte Carlo approximation rather than resorting to stochastic approximation. Our innovative estimator leads to a robust and efficient procedure reducing both the bias and the variance for a given computational effort. In the setting of discretized diffusions, we prove that our estimator satisfies a strong law of large numbers and a central limit theorem with optimal limiting variance. Finally, we illustrate the efficiency of our method on several numerical challenges coming from quantitative finance.
Fichier principal
Vignette du fichier
Multilevel_Sample_Average_Approximation.pdf (775.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01214840 , version 1 (13-10-2015)
hal-01214840 , version 2 (03-05-2016)
hal-01214840 , version 3 (04-07-2017)
hal-01214840 , version 4 (07-07-2017)

Identifiants

Citer

Ahmed Kebaier, Jérôme Lelong. Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation. 2015. ⟨hal-01214840v1⟩

Collections

LJK_PS_SAM
1124 Consultations
506 Téléchargements

Altmetric

Partager

More