Robust Approach for Butterfly Species Classification Using A Single Spatio-Hyperspectral Image - Laboratoire d'Informatique Signal et Image de la Côte d'Opale
Communication Dans Un Congrès Année : 2024

Robust Approach for Butterfly Species Classification Using A Single Spatio-Hyperspectral Image

Résumé

Distinguishing between pest and pollinator butterfly species is a major challenge in precision agriculture. However, traditional RGB cameras, capturing only shape and surface color, are insufficient for detailed insect analysis. This work explores the rich spectral information provided by hyperspectral imaging for effective butterfly species identification. For this purpose, we use a single spatio-spectral image that provides partial spectral information to identify the butterfly species. The proposed classification approach consists of a convex combination of the probabilistic decisions obtained by the Gaussian Naive Bayes and Z-score methods for each butterfly reflectance. Compared to traditional classification models, this approach showed higher robustness and performance.
Fichier principal
Vignette du fichier
erick_whispers_2024.pdf (3.14 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04772010 , version 1 (10-12-2024)

Identifiants

  • HAL Id : hal-04772010 , version 1

Citer

Erick Adje, Gilles Delmaire, Arnaud Ahouandjinou, Matthieu Puigt, Gilles Roussel. Robust Approach for Butterfly Species Classification Using A Single Spatio-Hyperspectral Image. 14Th Workshop on Hyperspectral Images and Signal Processing: Evolution in Remote Sensing - WHISPERS, Dec 2024, Helsinki, Finland. ⟨hal-04772010⟩
15 Consultations
0 Téléchargements

Partager

More